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Abstract: FPGA-FS provides a framework for high performance reconfigurable

computer environment. The abstraction between the reconfigurable device and the

user application is simplified by using a virtual filesystem and a thread abstraction

per device context.

FPGA-FS consits of two major layers of abstraction. First, the directory repre-

sentation to the user application. This interface provides for each context one

directory with a specified content to transfer data. The second layer provides an

interface for low level driver. It gives the flexibility to register a lot of different

low level driver for different accelerators which can be operate at the same time in

one target system.

The virtual filesystem and the developed hardware interfaces will be available for

the open source community.
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1 Introduction

1.1 Introduction

This is the dissertation for the MSc Dissertation in Distributed Computing Sys-

tems Engineering with the topic: Reconfigurable computers and parts in a High

Performance Environment. All not explained acronyms are listed in the glossary

and all book references are reflected in the bibliography.

The topic of reconfigurable computers and parts is not really new. There are many

different approaches developed with different goals. To clarify the definition of a

reconfigurable system, [RM98] presented the Olymp classification. This classifica-

tion does not only define reconfigurable systems it also groups the systems into

different categories. [HAW99] shows different criteria which can be used to classify

reconfigurable systems:

• Granularity of the logic: It defines the complexity of the lowest layer of the

architecture. The configurable architectures can be classified in fine, medium

and coarse grained architectures. It describes how the processing unit will

be operated.

• Integration to the host: It defines how the reconfigurable part is connected

to the Central Processing Unit (CPU) or computer. It can be classified as

dynamic, static, closely coupled and static loosely coupled architectures.

• Reconfigurability of the external interconnection network

1



Chapter 1. Introduction

• Speed of reconfiguration: This item points out the time which is needed to

reconfigure the system. The majority of reconfigurable systems is based on

Field Programmable Gate Arrays (FPGA) circuits. The FPGA circuits have

a slow, serial reconfigurable path. There are several ideas how to solve this

issue.

• Speed, size and density of a single node. Whereby speed is the used clock

frequency.

• Memory structures and interface.

• Application development tools.

[HAW99] shows the presented Olymp classification [RM98] as a tree like the
following listing:

• Fault-tolerance (ATHENA)

• Speed

• Coarse grained

– Reconfigurable network (DYONISIUS)

– Fixed network (PAN)

• Medium grained

– Fixed network

∗ Dynamic (HADES)

∗ Static

∗ Closely coupled (EOS)

∗ Loosely coupled (HERA)

– Reconfigurable network

∗ Dynamic (POSEIDON)

∗ Static

∗ Closely coupled (HELIUS)

∗ Loosely coupled (ZEUS)

• Fine grained

– Fixed network

∗ Dynamic (ARTEMIS)

∗ Static

∗ Closely coupled (DEMETER)

∗ Loosely coupled (HEPHESTUS)

– Reconfigurable network

∗ Dynamic (APOLLO)

∗ Static

∗ Closely coupled (PERSEFONA)
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Chapter 1. Introduction

∗ Loosely coupled (APHRODITE)

The next chapter will show and describe some developed reconfigurable computer

architectures. Chapter 2.2 gives the initial survey of the whole project. An

overview over the aims and objectives covers chapter 1.3. The initial design is

done in chapter 3.1.

1.2 Aims

The following list shows the aims which motivated me to research this topic and I

try to achieve:

• to develop a reconfigurable system.

• to create a well know interface between userspace applications as well as

between the kernel space and the real hardware.

• to use existing expertise as well as to learn new techniques to reach the above

aims.

1.3 Objectives

During the initial survey 2.2, the following key parts of the system are identified.

During the dissertation the target system has been changed. This was caused by

absence hardware. So a new system design was developed.

• Target System – As already mentioned, the target system will be a host CPU

connected to a southbridge and on the southbridge bus connected to the

reconfigurable FPGA part. The FPGA will be connected to a JTAG port

which provides a way to reconfigure.

• Interface to the FPGA – The FPGA will be connected to a system bus of the

southbridge. To provide a communication interface between the southbridge

bus and the computing logic this interface has to be designed. This interface

should provide the possibility to send and receive data as well as commands.
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Chapter 1. Introduction

• Linux device driver and API – The device driver provides the functionality to

operate with the FPGA interface. In later versions the driver should provide

scheduling mechanisms and calculations to determine the effective execution

time (2.1.2).

1.4 Methodology and Limitations

To achieve the aims in section 1.2, the following methodology was used. A system

solving the task will be implemented and analysed. The limitations are that each

programme which was implemented during this dissertation will be in this phase a

prototype. A further development of the complete system can only be done after

the dissertation.

1.5 Dissertations Structure

The dissertation is structured as follows:

• Chapter 1 contains this introduction.

• Chapter 2 provides the background on the basis of this dissertation and

tries to formulate the aims and objects.

• Chapter 3 describes the design and methods on which the results of this

dissertation are based.

• Chapter 4 supplies information on the implemented software parts, on why

and how parts was programmed. This chapter explains some details of design

and structure of programming results without going into every detail of the

written code.

• Chapter 5 provides the conclusions drawn by this disseration.

• Glossary contains the glossary.

• Bibliography contains all referenced information.
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2 Background

2.1 Background to the project

This chapter is divided into two different approaches. The first subsection deals

with available reconfigurable computer systems. The other subsection deals with

reconfigurable co-processor systems. Both approaches can be used to create a

reconfigurable system, whereby the types of the systems are different.

2.1.1 Available Reconfigurable Computer Systems

A lot research teams worked on reconfigurable computer systems. The following

subsections reflects a few results of the teams.

RAW Architecture Workstation

The RAW project is founded by the Massachusetts Institute of Technology Labo-

ratory for Computer Science. An unique approach is described in [HAW99] which

belongs to the Pan category. The system is based on simple, highly interconnected,

replicated processing unit tiles. Each unit consists of a processing unit, a switching

processor and a reconfigurable routing processor. The main processing unit works

on the programme logic, the switching processor works on branch instructions as

well as load and store instructions. The reconfigurable routing processor works

autonomous and creates interconnection to other tiles. Additional to the three

processors each tile has its own memory for data and instructions. A compiler

does the distribution of the program logic.

5



Chapter 2. Background

Xputer

The Xputer was founded by the University of Kaiserslautern and belongs to the

Eos category [HAW99]. The System does not have a hard wired Arithmetic logic

unit (ALU) or an instruction sequencer. Instead of these it has a data sequencer

and a reconfigurable ALU. This three major parts describe the basic structure of

the Xputer system [RWH94]:

• two-dimensionally organized data memory

• reconfigurable arithmetic & logic unit (rALU) including several rALU sub-

nets with multiple scan windows

• reconfigurable data sequencer (DS) comprising several generic address gen-

erators (GAGs)

A tool chain for the Xputer based on the C programming language has been

developed. The first level of the tool chain splits the code into few parts. A

code part which is executed on the host machine and the other code is executed

on the Xputer. For the next step the Xputer code will be divided into a part

for the address generator and a structure for the ALU array. Furthermore the

compiler analyzes data dependencies among different operations and tries to find

an optimal sequence. This tool chain gives the developer the option to use the

Xputer without writing machine-dependent code. However the developer will get

much more performance by writing machine-dependent code.

MATRIX

The MATRIX system was founded by the Massachusetts Institute of Technology

and belongs to the Eos category. The system is based on configurable 8 bit units

with 256 Byte of memory. Each unit could be used as data or instruction memory,

as ALU or branch unit. The network between the units is based on three layers.

The first layer produces fast connection between neighbours, the second layer

connects far distant units and the third layer acts as a type of a global bus system.

The third layer connects all units and external peripherals. To the outside such a

network of computing units is visible by distributing the instructions.
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Chapter 2. Background

Splash2

The Splash2 system was founded by the Supercomputing Research Center and

belongs to the Hephestus category. The Splash system is organized in linear arrays

which consist of 32 Xilinx FPGAs where each node has 128kB of memory. Each

node is connected to a 68-bit data-path where the first and the last nodes are

connected to the host computer through FIFO arrays. The board is connected

to the host computer with two buses, one for data transfers and the other for

configuration. Each FPGA can be configured separately which gives the system a

better overall performance.

The development tool chain consists of several tools. One of the tools is the

Logic Description Generator, which uses a common Lisp programming language

for manipulating templates describing logic functions ([HAW99]). Nevertheless all

tools allow only low-level programming of the FPGAs. This requires always a deep

understanding of the system.

DISC

The DISC was founded by the Birgham Young University and it belongs to the

Demeter category. The idea of this system is the partial reconfiguration. As the

name says the system deals with a dynamic instruction set. The system handles

the instructions as objects which can be allocated and rejected. Very complex

operations can be combined with the basic instructions set. A new subset of

instructions can also be loaded into the system. If the space requirement of the

instructions exceed the capacity of the FPGA, then simply different instructions

are removed after the least recently used method (LRU) from the system.

PAM-Blox

The PAM-Blox approach [OM] provides an object-oriented circuit generator on

top of a PCI design environment (PamDC). The design is described in C++ and

the developer has total control over placement at each level of the design hierarchy.

PAM-Blox is divided into two layers, the first one can parameterize simple elements

such as counters and adders. The second one can create different optimizations for

7



Chapter 2. Background

specific data-widths such as multipliers and special arithmetic units for encryption.

PAM-Blox is available as an open library for the community.

RCMAT

The RCMAT is founded by the Queen’s University of Belfast [AA01]. The ap-

proach combines a reconfigurable coprocessor with a general-purpose microproces-

sor. It was developed to as a solution for some computationally intensive tasks.

The more specific task is to exploit large amount of fine grain parallelism in com-

putationally intensive applications. A prototype implementation perform some

matrix operations, transforms and decompositions.

8



Chapter 2. Background

2.1.2 Reconfigurable Co-Processors

Another approach of reconfigurable systems offers the combination of a standard

Personal Computer system and a reconfigurable Co-Processor. As Co-Processor

a FPGA will be used to roll out special functions from software in hardware. In

the past this solution was often used for embedded systems, to accelerate spe-

cial functions for those the embedded processor was too slow. New developments

in this area are combining faster processors with FPGAs. These systems use a

symmetric multiprocessing (SMP) board and connect the CPU to the FPGA via

HyperTransport (HT) bus1 [EET06], [Gue06]. The FPGA will be plugged into the

second CPU socket. Another approach to connect a CPU with a reconfigurable

module is to use the PCI-X2 or a PCI-E3 Bus [FPG06].

By using a FPGA as a Co-Processor to solve specific problems the time of the

calculation will be combined of different aspects:

• Configuration Time: The time to configure the FPGA. In a dynamic system

the configuration of the FPGA can be changed to solve different problems.

This time can vary because it could be, that the FPGA has already been

correctly configured or that the configuration has not yet been updated.

Furthermore it depends on how it takes to reconfigure the module.

• Transfer Time: The time to transfer all needed data to the device and trans-

fer the result back. This depends on the interconnection between the host

CPU and the reconfigurable device. Further it depends on the size of the

memory on the device. This means, if the data that should be computed

fit not completely into the device, transfers between the computations must

take place. The same issue appears also with a result which does not fit

into the device memory. A solution for the data transfer can be a double

1HyperTransport (HT), is a bidirectional serial/parallel high-bandwidth, low-latency point to

point link.
2PCI-X has a width of 64-bit, a maximum signaling frequency of 133 MHz (peak transfer rate

of 1014 MB/s)
3PCI-E based on serial links called lanes and runs with 2.5 GHz, each lane carries 250 MB/s

in each direction. (8 GB/s (x32))
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Chapter 2. Background

buffering solution which guarantees that the device always has enough data

to compute.

• Calculation Time: The time to compute the problem. This time depends

always on the problem and how the programme of the FPGA is implemented.

Some algorithms can be better implemented in software and some others better in

hardware. If algorithms will be implemented in hardware, the described aspects

above must be considered. Nowadays the clock frequency of FPGAs are much

lesser than the frequency of normal CPUs and a good performance can only be

reached if the programme flow does not reconfigure the device very often.

The next subsection shows some developed FPGA based Co-Processor projects.

Synthup

The Synthup sound synthesis system is founded by the France Telecom. It is based

on seven computing units based on FPGAs with local memory. Further it has five

FPGAs for the data transfer and a control FPGA, as well as a PCI-X Bus interface

which is not reconfigurable.

The system can be reconfigured within a few milliseconds. But with a bus fre-

quency of 66 MHz (PCI) these are thousands of bus cycles. The frequency of 40

Mhz is completely enough for the application and can filter 48 audio channels in

real time [Rac00].

RTOS Scheduling Co-Processor

The RTOS Scheduling Co-Processor is founded by the University of Rostock. A

FPGA based process scheduler can be used in a hard real time operating system.

The goal of the project is to remove the scheduling from the main processor to

guarantee hard real time requests. For this the FPGA computes the whole time

the priorities of all processes in parallel and saves the computed values. To signal

a process scheduling it can send an interrupt to the main CPU [Hil00].

10



Chapter 2. Background

2.2 Initial survey

The goal is to develop a system which supports the dynamic, software initiated

reconfiguration of a FPGA connected to a bus of a computer system. Illustration

2.1 shows a block diagram of the target system.

Figure 2.1: Diagram of the Target System

As mentioned in chapter 2.1 different approaches are developed by other research

groups. These approaches often have the focus on hardware configurations. This

dissertation will have the focus more on the software side and how a reconfigurable

part can be used inside a dynamic system environment.

The first and core part of the whole architecture is to connect a reconfigurable part

to a system bus. This will also cover the interface which provides the possibility

to exchange data and commands to and from the device. The configuration of the

reconfigurable part will be done with a Xilinx System ACE4 module. A strategy

to reprogramme the System ACE module must be developed as well.

4System ACE is a system-level configuration device that can configure all Xilinx FPGAs in a

system.[XIL07]
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Chapter 2. Background

The next step is to get the Linux operating system running on the target system.

This also includes the detection of the interface where the reconfigurable device is

attached. Further the initialisation is part of the detection process. An abstraction

layer between the hardware interface and the real user application should provide

as an easy to use API for the application developer. The API includes functional-

ity to reconfigure the device and functionality to exchange data. Also a method to

compute the effective execution time of the reconfiguration is part of the layer be-

tween application and the hardware interface. Also the calculation of the problem

which should be solved is included into this layer. This method should have the

possibility to decide when and how the request will be handled. It is conceivable

that the method has a scheduler to handle more than one reconfiguration request.

All together a complete application will consists of different parts. First of all the

application has a synthesised VHDL/Verilog code which can be used to programme

the reconfigurable device. It also has a software part which uses the hardware part.

It is conceivable that the application has a fallback part which will be used if the

effective execution time of the reconfigurable software is higher than the execution

time on the host CPU. Whereby the main calculation part which is the hardware

part or the fallback software part can be transparently exchanged.

2.3 Implementation Approaches

This section provides information about the used platform and the used program-

ming languages. The FPGA board was used because of the availability by the

manufacturer and the possibility to connect the board directly to a PCI bus. The

small price of the board also contributed to the decision. As host platform a stan-

dard desktop computer could be used. Almost all newer desktop computers have a

PCI bus and provide enough slots to plug in additional cards. The decision to use

Linux as operating system was done because of the openness of the kernel. Also

the good and documented interfaces of the different areas are very helpful. Be-

cause of using Linux the choice of the programming language is fixed. More than

90 percent of the Linux kernel is written in C, so the usage of C is indispensable.

12
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For the development of hardware relevant parts the programming language VHDL

was chosen. This was done because the used core from Opencores is written in

this language. To have a continuous coding base the same language are used for

the other cores.

13



3 Design

3.1 Initial Design

After the definition of the aims and objectives the following initial design has been

created:

3.1.1 Target System

Figure 2.1 shows a block diagram of the used target system. The first task is to

get a minimal version of the Linux operating system working. This step is very

important for the complete project. Without the operating system working on the

target system, the project cannot be finished. The plan is to get an unmodified

kernel with a tiny ramdisk working. For this only the RAM initialisation and the

basic input/output have to work.

3.1.2 FGPA Interface

As shown in figure 3.1 the system consists of two FPGAs. One is connected to

the CPU and the other one is connected to the first FPGA. The first FPGA

acts as a southbridge. A logical bus has to be found on which the physical bus

between the two FPGAs could be connected. Furthermore, a bus protocol has to be

defined between the southbridge FPGA and the reconfigurable FPGA. To handle

more than one logic on the reconfigurable FPGA the interface has to provide a

mechanism. As a pipe for one logic on the FPGA, first in first out (FIFO) queues

for data are suitable. Figure 3.1 illustrates a high level design for the interface

on the reconfigurable FPGA. It shows an interface which consists of three FIFO

queues connected with three different core implementations.

14
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Figure 3.1: FGPA Interface

On the southbridge’s side, the interface is a memory mapped input output

(MMIO) interface which can be reachable and programmed by the Linux device

driver.

3.1.3 Linux Interface

There are three different possible Linux interfaces. One approach is creating a

character device to communicate with the kernel driver. Another approach is

introducing new system calls to add the functionality. The third approach is a

virtual filesystem to provide the functionality. These are the three different ap-

proaches to add the desired functionality to the Linux kernel and to create an API

for the developer. To decide which interface is best suited for this project, a few

arguments will be given below.

The character device approach is the simplest model for device drivers. It relies

on ioctl multiplexing. A disadvantage is that resource management must be done

in user space. The system call approach is a very restrictive approach because

it is hard to define system calls. For very complex functionality, a large number

of system calls are required and some functionality will duplicate concepts in the

kernel. The virtual filesystem approach is similar to the well known procfs or sysfs.

It uses existing system calls like open, read, write, mmap, etc. The abstraction of

different reconfigurable parts will be done with different directories. File permis-

sions can be used for access control.

15
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The virtual filesystem approach provides a very good interface for the functionality

which is to be provided by this project. Each reconfigurable part in a FPGA can be

abstracted by a directory. The permissions of the files can provide access control

for different users. Furthermore, extensions like scheduling mechanisms can be

added in the background layers of the filesystem. Calculation of execution time

can be performed by writing data to the available interface files. The following

listing shows an example on what the directory entries might look like. These

entries can be seen as the assigned context to the FPGA interface:

• /fpgafs/example/cmd: write only file, this is the interface to send defined

commands to the context.

• /fpgafs/example/stat: read only file, from which the context’s status can be

received.

• /fpgafs/example/din: write only file, sends data to the reconfigurable device.

• /fpgafs/example/dout: read only file, receives calculated data from the device.

• /fpgafs/example/load: write only file, writes data which should be loaded

onto the reconfigurable device.

• /fpgafs/foobar/lldrv: write only file, selects the low level driver which should

be used.

All entries can be manipulated with standard applications like ”xxd”, ”echo”,

”cat” or ”dd”. For a complete solution a userspace library is necessary to provide

an easy to use interface for application developers.
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Chapter 3. Design

3.2 Target System

The initial target device described in section 3.1 was changed to a standard per-

sonal computer with a x86 CPU. The update was done because of hardware issues

with the described target system. The first target system was a prototype system,

developed with the described features 2.2. It could not be used because during the

dissertation a lot of problems occurs. Problems like connection problems between

the FPGSs and configuration problems with the System ACE interface. Because

of this the whole design of the target system must be changed and a standard

personal computer with a PCI bus was be used. Also a different reconfigurable

part has to be used. A really good FPGA board is developed by the manufacturer

Enterpoint from Malvern, United Kingdom. The target system gets as operating

system the distribution ArchLinux installed. The base of the distribution is a

Linux kernel 2.6.22. The installation was done on a non-removable disk and can

be started with the boot loader Grub.

The used FPGA is a board1 with a Xilinx Spartan32 FPGA. The figure 3.2 shows

the used board.

Figure 3.2: FPGA Board (Xilinx Spartan3)

1http://www.enterpoint.co.uk/moelbryn/raggedstone1.html
2http://www.xilinx.com/products/silicon solutions/fpgas/spartan series/index.htm
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3.3 FPGA Interface

The FPGA is connected to the PCI Bus of a standard personal computer. Because

of this system design, the FPGA must have a PCI Core to communicate with the

host CPU. As a PCI Core, an implementation from the OpenCores project 3 was

chosen. This core implements a full PCI slave and provides a Whisbone interface

to the FPGA logic side. Whisbone is specified in [Her02] and will be used to create

flexible designs with a standardised interconnection in order to reuse cores. The

following paragraphs deals with the PCI core adaption and the interface which

will be connected to the Whisbone bus.

As mentioned before, the PCI core is a fully functional slave with a Whisbone back-

end. The Whisbone specification [Her02] has different interconnection possibilities

to connect masters and slaves. The existing interconnections are, point-to-point,

data flow, shared bus, crossbar switch. Point-to-point is the simplest way to in-

terconnect Whisbone cores. Figure 3.3 shows a point-to-point interconnection.

Figure 3.3: Whisbone: Point-to-point interconnection

Another possibility to connect cores is the data flow interconnection. For this

solution, a Whisbone master and a slave must be integrated into each core. The

arrangement looks like a pipeline. This model will often be used to create streaming

solutions where each core solves a fraction of the overall problem. Figure 3.4 shows

a data flow interconnection.

The shared bus interconnection method is another connection possibility. This

solution connects all masters and slaves to the same bus. An arbiter is used to

allow all masters to access the bus. Typical usage of this solution are PCI and

VMEbus. Figure 3.5 shows a shared bus interconnection.

3http://www.opencores.org/projects.cgi/web/pci32tlite oc/

18



Chapter 3. Design

Figure 3.4: Whisbone: Data flow interconnection

Figure 3.5: Whisbone: Shared bus interconnection

The crossbar switch interconnection is used for two or more masters and two or

more slaves. Figure 3.6 shows a sample connection with two active connections.

This solution works with addressing and each master can set up a connection to

each slave. A arbiter is used to arrange connections between the masters and

slaves.

Figure 3.6: Whisbone: Crossbar switch interconnection

For this dissertation a shared bus solution is needed. Because of the different

queues, different addresses on the Whisbone bus must be reachable. The PCI core

will put the Wishbone address on the bus and an arbiter will decide which part on

19



Chapter 3. Design

the bus will get bus control. In the future a crossbar switch interconnection will

be implemented. This gives the possibility to connect more than one accelerator

function to the PCI core and consequently to the Linux framework. This means

for the first implementation only one accelerator functionality is possible. Directly

to the Whisbone interface, two FIFO logic components will be connected. These

buffers will be used for incoming and outgoing data as well as for commands. Fig-

ure 3.7 shows how the interface looks like.

Figure 3.7: Whisbone FIFO interface

The figure shows the PCI core connected to a module which includes two FIFO

queues and the accelerator logic. Both FIFO queues are connected to the Whis-

bone bus and have different addresses to respond to the requests. The Whisbone

master writes an address to the bus and the corresponding FIFO queue receives

or sends the data.

The connected accelerator hardware is attached to the queues via a data link which

always points to the first entry in the queue. There are two different queues, one for

incoming and one for outgoing transfers. The incoming queue has an “acknowl-

edge” line to signal that data have been read as well as a counter signal which

shows if the queue has any entries. Figure 3.8 shows the accelerator interface for

the incoming queue. The accelerator interface has a data bus with a width of 16

Bits. The bus is an output signal. The data count signal gives the total number of

data chunks inside the queue. To confirm a chunk of data, the acknowledge line is

available. Figure 3.9 shows the accelerator interface for the outgoing queue. The
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Figure 3.8: Accelerator Incoming Queue Interface

accelerator interface has a 16 bits wide data bus. The bus is an input signal. The

select signal is available to signalise that data is available on the data bus and that

the queue can fetch the data. This simple design is a queue to the accelerator.

So it is possible that the software side can write a lot of data into the queue to

guarantee that the accelerator always has enough data to work on. In the other

direction, the queue guarantees that the accelerator can store the calculated data.

Figure 3.9: Accelerator Outgoing Queue Interface
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3.3.1 FPGA Reconfiguration

Some parts of the used FPGA are connected to a JTAG bus. JTAG is standardised

by the Institute of Electrical and Electronics Engineers (IEEE) as IEEE 1149.1-

1990. It is a 4/5-wire bus and is an interface to test at the wafer, packaged-chip and

board/system levels. It is be used to do boundary scans with standardised instruc-

tions. The commands can do in-circuit testing and board testing with a automated

mechanism. Furthermore additional functionality is added by the manufacturers

which allow JTAG to be used as a debug port. For example FPGA manufacturers

allow configuring the FPGA trough JTAG.

The four wire bus on the used FPGA board has following signals connected:

• TCK – JTAG clock signal, all signals are synchronous to TCK (raising edge).

• TMS – TMS controls the TAP controller (next slide). If more than one IC

is connected all ICs move together.

• TDI/O – Shift data into and out of a device/chain.

The mentioned TAP controller is a state machine to send or receive data to or

from the FPGA. Figure 3.10 shows the TAP controller. The little numbers are the

values of TMS to change the state.

Instructions which are shifted into the ”Shift-IR” state are for boundary scans

standardised and for debugging and programming from each manufacturer speci-

fied. The following items give a short overview of some instructions:

• IEEE specified instructions:

– BYPASS: set chip into bypass mode (0xFF)

– IDCODE: include the device id into DR register

• Manufacturer instructions:

– XPROGRAM: background flashing mode (Lattice FPGA)
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– ERASE: flash erase instruction (Lattice FPGA)

– INIT ADDRESS: initialize the address pointer (Lattice FPGA)

– Voltage ID (VID): include the VID into DR register (Cell/B.E.)

Figure 3.10: JTAG Tap Controller
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3.4 Linux Interface

As described in section 3.1.3, the virtual filesystem approach was taken. It provides

the needed flexibility and a well defined API, which is needed for this project. The

next paragraphs deal with the complete design which will actually be implement.

3.4.1 Overall Design

In general, the complete framework provides a generic interface to the userspace

and a flexible and changeable interface to the hardware. Another important part

of the framework is management of the different contexts, represented by different

directories. Each context has the entries defined in 3.1.3.

Figure 3.11: Framework overall design

Figure 3.11 shows the design of the framework. At the bottom, there are low level

drivers which must be registered on the main FPGAFS. Further information can

be found in 3.4.3. On top of the low-level drivers, different contexts are shown

which are represented by directories.
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3.4.2 Userspace API

The userspace API is represented by a virtual filesystem. The filesystem acts as

a generalized abstraction layer with defined interfaces. As described in 3.1.3, the

filesystem should be mounted to the location ”/fpgafs”. During the first phase this

location can be used in conjunction with standard applications like ”xxd”, ”echo”,

”cat” or ”dd”. During the second phase, a userspace library will be created which

can be used to initialize a new context. Additional functionality provided by the

library will be sending and receivng data as well as commands to and from the

virtual filesystem. For that functionality the underlaying hardware will be totally

transparent to the userspace application. The following items show the functions

which will be implemented and will be available for userspace applications, all func-

tions have one common parameter. This parameter points to the used directory

inside the fpgafs:

• int fpgafs create context(const char *dir, int fd, const char *name)

Creates a new context for the application. Parameter ”fd” is a file descriptor

to the file which should be loaded to the accelerator. ”lldrv” select the low

level driver which should be used. The last parameter is the directory of the

context under the fpgafs node. Return value will be ”0” on success or ”-1”

on failure.

• int fpgafs send data(const char *dir, const void *buf, size t count)

Sends data to the accelerator. Parameter ”buf” is the pointer to the data

which should be send, ”count” is the size of the data chunk to be send.

Return value will be the amount of data successully sent or ”-1” on failure.

• int fpgafs recv data(const char *dir, void *buf, size t count)

Receives data from the accelerator. Parameter ”buf” is the pointer to the

location where the data should be stored, ”count” is the size of the data

chunk to be received. Return value will be the amount data received or ”-1”

on failure.

• int fpgafs send cmd(const char *dir, unsigned int cmd)

Sends commands to the accelerator or low level driver. Parameter ”cmd” is
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the command to be send. Return value will be zero on success or ”-1” on

failure. Depending of the command, the return value may also indicate the

status of the accelerator.

• int fpgafs get stat(const char *dir)

Retrieves the status of the accelerator. Return value will be the status of

the accelerator or ”-1” on failure.

• int fpgafs set lldrv(const char *dir, const char* name)

Sets the low level driver which should be used. Parameter ”name” is the

corresponding name of the low level driver. Return value will be ”0” on

success or ”-1” on failure.

All the listed functions will be availble with the libfpgafs library and can be linked

as static or dynamic functions.

3.4.3 Low Level Driver Management

The main FPGAFS module provides a mechanism to register low level drivers

for different hardware accelerators. Each low level driver must implement some

defined functions which will be called from the main FPGAFS module. The next

sections describe the low level handling in the main FPGAFS module perspective

and in a low level driver perspective.

Main FPGAFS Module

The main FPGAFS module provides two functions to register and unregister low

level drivers. The module manages the drivers in an array. In the first implemen-

tation there is a static array and the module can therefore only manage a given

maximum number of low level drivers. On registration of a driver the loaded driver

module calls the registration function and delivers a structure with function calls.

The listing 3.1 shows the delivered structure on registration and unregistration.

1 /∗ low l e v e l d r i v e r ∗/

struct f p g a f s l l d r v {
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3 char name [ 5 ] ;

5 int (∗ i n i t ) (void ) ;

int (∗ ex i t ) (void ) ;

7

int (∗ send ) ( struct fpga context ∗ctx , const char

use r ∗buf , int l en ) ;

9 int (∗ recv ) ( struct fpga context ∗ctx , unsigned char ∗
buf , int l en ) ;

11 int (∗cmd) ( struct fpga context ∗ctx , const char use r

∗buf , int l en ) ;

int (∗ s tat ) ( struct fpga context ∗ctx , unsigned char ∗
buf , int l en ) ;

13

int (∗ read load ) ( struct fpga context ∗ctx , unsigned

char ∗buf , int l en ) ;

15 int (∗ wr i te load ) ( struct fpga context ∗ctx , const char

use r ∗buf , int l en ) ;

} ;

Listing 3.1: Low Level registration structure

The structure provides the low level driver name, init and exit functions which will

be called when a context will be created or destroyed. These events occur when

a new directory is created inside the virtual filesystem or an existing directory is

removed. Further content of the structure are the send and recv function pointers

which will be called when a userspace program wants to send or to receive data

to or from the accelerator. The files which allow sending and receiving data are

”dout” and ”din”. The last two functions provide the functionality to load a bit

stream to the accelerator and to read it back. Those functions are needed when

a userspace application writes/reads data into/from the file ”load”. All function

pointers will be called from generalized functions. Those functions always receive

a parameter specifying which file is called. The file pointer provides a private area
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which has a pointer to a FPGAFS context structure. The FPGAFS context struc-

ture provides information about the used low level driver. With this mechanism,

each directory can have its own low level driver and is able to exchange its data

or commands.

All described functionality provides a flexible virtual filesystem which can be used

with different underlying hardware interfaces. The un-/registration functions will

be available as an exported symbol inside the Linux Kernel. This method allows

each driver to register itself with the FPGAFS framework. After loading the

FPGAFS framework has no hardware knowledge and returns a busy error value

on calling any function of the filesystem. After registration of a low level driver,

the userspace application can choose between all available low level drivers.

Low Level Driver

A low level driver implements an interface which will be used by more generalized

functions from the low level management. As shown in listing 3.1, the low level

driver has to provide at least the defined function pointers. Each low level driver

can be loaded and unloaded as a common Linux module. Like every Linux mod-

ule, the low level driver has an init and an exit function. At load time, the init

function will be called. The init function of each low level driver has to call the

registration function of the FPGAFS low level management module. Nearly the

same procedure will be done on unloading a low level driver. But instead of calling

the registration function the unregistration function will be called.

With this concept different hardware accelerators can be supported and each low

level driver can implement its own communication functions. So each low level

driver brings its own programming routine for the accelerator. This gives the

possibility to create accelerators that can handle more than one application at

once. For example, the accelerator can reprogram parts of the accelerator and can

be used without reconfiguring the whole accelerator. However, this functionality

totally depends on the underlying hardware and the programming mechanism. But

the framework will support such and other functionalities because of the flexible
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layer concept.
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4 Results and Implementations

After the design of all the relevant parts of the dissertation was finished, the

following results were obtained. This chapter deals with the applications and

programming languages used and the results to which they lead.

4.1 Applications and Programming

This section offers a short introduction to the applications and programming lan-

guages which were used and why they were used.

4.1.1 Applications

• Xilinx WebPAC 9.2i — The development environment WebPAC was used for

the FPGA development because the soldered FPGA is a Xilinx XC3S1500.

Included are the synthesis tools and all needed applications to create a com-

plete design.

• GCC 4.1.2, Binutils 2.17.50.0.12-4 — For all programmed part on Linux this

compiler and bin utilities were used. The compiler is distributed by the Free

Software Foundation (FSF) under the GNU General Public License (GNU

GPL).

4.1.2 Programming Languages

• C — C is a general-purpose computer programming language developed in

1972 by Dennis Ritchie and Brian Kernighan. It is popular used for systems

programming. The main part of Linux is written in C. And the implemented

parts, the virtual filesystem and system library are also written in C.
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• VHDL — VHDL is commonly used for FPGA programming. VHDL was

developed to describe the behavior of ASICs. It borrows heavily from the

programming language Ada in concepts and syntax.
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4.2 Linux Interface

This section describes the implementation details of the virtual filesystem and the

system library.

4.2.1 Virtual Filesystem

inode.c

This is the main file where the filesystem specific functions are located. When load-

ing the module an inode cache will be created and the filesystem will be registered

to the Linux kernel filesystem registration. After this initialisation the filesystem

is available and can be found in the proc filesystem under ”/proc/filesystems” as

FPGAFS. During the unloading the allocated inode cache will be freed and the

filesystem will be unregistered.

To implement a virtual filesystem in the Linux VFS layer some functions are

needed. For example the implementation must provide functions to manage the

super block and functions to manage simple directory calls. The rest of the func-

tions are needed to manage the inodes.

The next items show some functions and a description. Some of these function

are directly called when operating with the filesystem and the other are only used

internally. The filesystem functions are passed during the registration and creation

of the filesystem superblock.

• static struct inode *fpgafs alloc inode(struct super block *sb)

This function is used to allocate new inodes. Internally the function uses

the kernel internal cache allocation function and adds additional queries to

detect if the function call was successful. The return value is ”NULL” on

fail and the pointer to the memory location on success.

• static void fpgafs destroy inode(struct inode *inode)

This function is the contrary to the allocation function. It frees the allocated

memory.
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• static struct inode *fpgafs new inode(struct super block *sb, int mode)

To create a new inode, this function will be called. It initialises all needed

fields in the inode structure like the user id, group id and mode. The return

value is a pointer to the created inode structure.

• static int fpgafs fill dir(struct dentry *dir, struct tree descr *files, int mode,

struct fpga context *ctx)

This function creates the content of a directory. It will be called from the

function which will create a directory. The parameter file is a structure with

a list of files which should be created. With this function the FPGAFS gets

the content described in 3.1.3.

• static int fpgafs new file(struct super block *sb, struct dentry *dentry, const

struct file operations *fops, int mode, struct fpga context *ctx)

The function creates new files. It calls the function which creates new inodes

and adds some more initialisations. So it is a further wrapper function to

hide the creation of a inode.

• int fpgafs mkdir( struct inode *dir, struct dentry *dentry, int mode)

This function will be called on creation of a directory. It also calls the

function which creates new inodes. Further it calls the function which fills

the directory with the defined FPGAFS content. Additionally this function

creates a new context inside the framework.

• static void fpgafs prune dir(struct dentry *dir)

This function removes the complete content inside a directory. This is needed

to remove a directory without removing each file inside the directory. It will

be called on removing a directory and on any fail on creating a directory

with the FPGAFS content.

• static int fpgafs rmdir(struct inode *dir, struct dentry *dentry)

As the function name says, the function is called on removing a directory.

• int fpgafs fill sb(struct super block *sb, void *data, int silent)

This function is called on creating/mounting the filesystem. It sets the ini-
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tial blocksize, permissions, allocates the root inode and sets the operation

structure. The operation structure includes all functions which can be called

during operation with the filesystem (mkdir, rmdir).

• int init fpgafs init(void)

This is the initial module function. It will be called on loading the module,

it creates a cache for the inodes and registers the filesystem.

• int init fpgafs exit(void)

This is the exit module function. It will be called on unloading the module,

it removes the inode cache and unregisters the filesystem.

A very important function is the directory creation function. Generally it creates

a new directory in the virtual filesystem and fills the directory with the specified

content (3.1.3). Listing 4.1 shows the implementation of the function. First of all

a new inode will be created. After success a mutex will be used to lock the next

operations exclusivly for this program path. Inside the mutex lock some general

fields like group id and mode will be set for the directory itself. All created directo-

ries create a new context inside the FPGAFS framework. This will be done in line

19 and assigned to the context field from the inode. Furthermore the inode of the

directory gets the structures with the available operations which can be applied

to the directory and the files inside the directory. The next function in line 27 fills

the directory with the specified content. After filling the directory some internal

used counter and instantiations are called.

int fpgafs mkdir ( struct inode ∗dir , struct dentry ∗dentry , int mode)

2 {
int ret ;

4 struct inode ∗inode ;

struct fpga context ∗ctx = NULL;

6

ret = −ENOSPC;

8 inode = fpgafs new inode (dir−>i sb , mode | S IFDIR) ;

i f ( ! inode )

10 return ret ;

12 mutex lock(&inode−>i mutex ) ;

14 i f (dir−>i mode & S ISGID) {
inode−>i g id = dir−>i g id ;

16 inode−>i mode &= S ISGID ;

}
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18

ctx = alloc fpga context ( ) ;

20 FPGAFS I( inode )−>i ctx = ctx ;

i f ( ! ctx )

22 goto unmutex ;

24 inode−>i op = &fpgafs simple dir inode operations ;

inode−>i fop = &simple dir operations ;

26

ret = f pga f s f i l l d i r (dentry , fpgafs dir contents , mode, ctx ) ;

28

d instantiate (dentry , inode ) ;

30 dget (dentry ) ;

dir−>i n l ink++;

32 dentry−>d inode−>i n l ink++;

34 unmutex :

mutex unlock(&inode−>i mutex ) ;

36 return ret ;

}

Listing 4.1: FPGAFS Create Directory
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files.c

This file includes the description of the file which will be generated on creating

a new context. An overview of the files was given in chapter 3.1.3. The main

purpose of the file is to define the context/directory content. Furthermore the

different open, read and write functions are defined as well as the permissions of

each file. All functions are used from the low level management layer to give the

possibility for different accelerators and contexts. Listing 4.2 shows which files

should be created during the creation of a directory. The first column is the file

name, the second column specifies the file operations which should be used and

the last column specifies the file permissions. Listing 4.3 shows for example the

file operations for the file ”load”. All listed functions will be called during working

with the filesystem. So the function ”fpgafs write load” will be called on writing

to the file ”load”.

1 struct t ree desc r fpga f s d i r content s [ ] = {
{ ” d in ” , &fpga f s d in fops , 0222 , } ,

3 { ”dout ” , &fpgafs dout fops , 0444 , } ,

{ ” l oad ” , &fpga f s load fops , 0666 , } ,

5 { ”cmd” , &fpgafs cmd fops , 0222 , } ,

{ ” s t a t ” , &f pga f s s ta t fops , 0444 , } ,

7 { ” l l d r v ” , &f p ga f s l l d r v f op s , 0444 , } ,

{} ,

9 } ;

Listing 4.2: Context File Structure

1 stat ic const struct f i l e o p e r a t i o n s fpga f s l oad fops = {
. open = fpgafs open ,

3 . write = fpga f s wr i te load ,

. read = fpgafs read load ,

5 } ;

Listing 4.3: File Operations Structure
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llmgmt.c

This file includes all generalized read and write functions and the low level driver

management functions. These functions are mainly called from the file ”file.c”

where the userspace interface is defined. The low level driver management func-

tions are called from the different low level drivers. These drivers are loaded sep-

arately after the main FPGAFS framework is loaded. All functions are exported

symbols inside the kernel, this provides the functionality to call the functions from

the complete kernel space. Generally all functions have the same implementation

because each function calls the more generalised function from the low level driver.

Listing 4.4 shows an implementation as example for all other functions.

The first function is used to send data to the accelerator. The prototype of the

function is a normal writing prototype, defined inside the Linux kernel. Internally

the function gets the private area from the inode, where the FPGA context is

stored. Inside the FPGA context the used low level driver is stored. If a low

level driver is set, the function uses the array where all driver are registered and

calls the specified function. The second function which is used to receive data has

nearly the same implementation, the only difference is the called function of the

low level driver.

1 s s i ze t fpgafs send data ( struct f i l e ∗ f i l e , const char user ∗buf ,

s i ze t len , l o f f t ∗pos )

3 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

5 return ( fcur−>l ldrv > −1) ?

l ldrv [ fcur−>l ldrv ]−>send ( fcur , buf , len )

7 : −EBUSY;

}
9

s s i ze t fpgafs recv data ( struct f i l e ∗ f i l e , char user ∗buf ,

11 s i ze t len , l o f f t ∗pos )

{
13 struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

return ( fcur−>l ldrv > −1) ?

15 l ldrv [ fcur−>l ldrv ]−>recv ( fcur , buf , len )

: −EBUSY;

17 }

Listing 4.4: Low Level Function Generalisation
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4.2.2 Low Level Driver

Two working and usable low level driver are available. On the one hand the

debug low level driver which is used to debug the virtual filesystem and all the

functionalities of the filesystem like the low level driver management, read/write

data, creating context and all others. On the other hand there is the low level

driver for the used FPGA board available. The next two sections describe each

low level driver.

Debug Low Level Driver

This low level driver is implemented in the file ”fpgafs lldrv dbg.c” of the frame-

work. It is available under the name ”dbg” after loading the module into the

kernel. Specially this driver is only a debugging driver to verify all functionalities

of the FPGAFS framework. During the initialisation the driver creates buffers

where transfered data can be stored. The stored data can also be read back with

the corresponding read function. This method gives the possibility to verify the

complete chain from the low level driver to the userspace application. Listing 4.9

shows some parts of the implementation.

Raggedstone Low Level Diver

This low level driver is implemented in the file ”fpgafs lldrv rag.c” of the frame-

work. It is available under the name ”rag” after loading the module into the

kernel. This driver is a working driver for a accelerator solution which was de-

veloped in this dissertation. As mentioned in chapter 3.3 the FPGA is connected

to the PCI bus of the computer. So the driver has to detect the board during

loading the driver into the kernel. This will be done with internal Linux kernel

functions. During loading the module the function ”pci register driver” will be

called. As parameter the function gets a structure with function pointer to probe

and remove the PCI device, with a name and an additional structure. Inside the

additional structure a list of devices is given for which devices the driver will be

used. If the Linux kernel detects a device and finds the right kernel module, the

kernel calls the PCI probe function inside the responsible module. The module
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in this example will enable the device, request regions where the device should be

mapped and remap the device to the virtual memory. After probing the device is

available to do all specified operations. If the kernel module will be removed the

removing function in the kernel module will be called. This function releases all

mapped regions and deactivates the device.

To communicate with the device it reserves a 32Mbyte memory mapped region.

The region is divided into different functions which are described in chapter 4.3.4.

So the driver uses the different functions of the device to send or receive data. To

write data into the device the module uses the Linux kernel function ” get user(kbuf,

ubuf)” to copy the userpace data into kernelspace. Afterwords it writes the trans-

fered data with the function ”writew(data, addr)” to the specified memory mapped

region. Listing 4.5 shows the whole implementation of the Raggestone low level

driver.

1 #include <l i nux /pagemap . h>

#include <l i nux / ke rne l . h>

3 #include <l i nux /module . h>

#include <l i nux / i n i t . h>

5 #include <l i nux / pc i . h>

#include <l i nux /mm. h>

7 #include ” f pga f s . h”

9 #define VENDOR ID ALTERA 0x1172

#define DEVICE ID ALTERA 0x0100

11

stat ic void ∗vaddr = 0;

13 stat ic unsigned long memstart = 0 , memlen = 0;

15 stat ic int fpgafs send data rag ( struct fpga context ∗ctx , const char user ∗buf , int len )

{
17 int i ;

u8 user ∗usr ;

19 unsigned char dat [ 2 ] ;

21 i f ( len < 2)

return −EINVAL;

23

i f ( ! access ok (VERIFYREAD, buf , len ) )

25 return −EFAULT;

27 for ( i =0; i < len ; i+=2) {
usr = (u8∗)&buf [ i ] ;

29 i f ( get user (dat [ 0 ] , usr ) )

return −EFAULT;

31

usr = (u8∗)&buf [ i +1];

33 i f ( get user (dat [ 1 ] , usr ) )

return −EFAULT;

35
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writew ( ( dat [ 1 ] << 8) |dat [ 0 ] , vaddr ) ;

37 }

39 return i ;

}
41

stat ic int fpgafs recv data rag ( struct fpga context ∗ctx , unsigned char ∗buf , int len )

43 {
int i ; unsigned short d ;

45 unsigned char b [ 2 ] ;

47 i f ( ( len < 2) | | ( ( len % 2) != 0) )

return −EINVAL;

49

for ( i =0; i < len ; i+=2) {
51 d=readw ( ( void ∗) ( ( unsigned int )vaddr | 0x20 ) ) ;

b [ i ] = d & 0xff ;

53 b [ i +1] = d >> 8 ;

i f ( copy to user (b , ctx−>load buf , 2) )

55 return −EFAULT;

}
57

return i ;

59 }

61 int fpgafs device probe rag ( struct pci dev ∗dev , const struct pci device id ∗ id )

{
63 int ret ;

ret = pci enable device (dev) ;

65 i f ( ret < 0) {
printk (KERNWARNING ”FPGAFS RAG: unable to i n i t i a l i z e PCI dev i ce \n” ) ;

67 return ret ;

}
69

ret = pci request regions (dev , ”FPGAFS RAG” ) ;

71 i f ( ret < 0) {
printk (KERNWARNING ”FPGAFS RAG: unable to r e s e r v e PCI r e s ou r c e s \n” ) ;

73 pci disable device (dev) ;

return ret ;

75 }

77 memstart = pci resource start (dev , 0) ; /∗ 0 f o r BAR0 ∗/

memlen = pci resource len (dev , 0) ;

79 printk (KERNWARNING ”FPGAFS RAG: memstart=0x%lx memlen=%l i \n” , memstart , memlen) ;

81 vaddr = ioremap (memstart , memlen) ;

printk (KERNINFO ”FPGAFS RAG: dev i ce probe s u c c e s s f u l \n” ) ;

83 return ret ;

}
85

void fpgafs device remove rag ( struct pci dev ∗dev)

87 {
iounmap(vaddr ) ;

89 pci release regions (dev) ;

pci disable device (dev) ;

91 printk (KERNINFO ”FPGAFS RAG: dev i ce removed\n” ) ;

}
93

stat ic struct pci device id pci device id fpgafs rag [ ] =

95 {
{VENDORIDALTERA, DEVICE ID ALTERA, PCI ANY ID, PCI ANY ID, 0 , 0 , 0} ,

97 {} /∗ EOL ∗/

} ;

99

struct pci driver pci driver fpgafs rag =

101 {
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name : ”FPGAFS RAG” ,

103 id table : pci device id fpgafs rag ,

probe : fpgafs device probe rag ,

105 remove : fpgafs device remove rag

} ;

107

stat ic int fpgafs init rag (void )

109 {
printk (KERNINFO ”FPGFS RAG: PCI i n i t \n” ) ;

111 return pci register driver (&pci driver fpgafs rag ) ;

}
113

stat ic int fpgafs exit rag (void )

115 {
printk (KERNINFO ”FPGFS RAG: PCI f i n i \n” ) ;

117 pci unregister driver (&pci driver fpgafs rag ) ;

return 0 ;

119 }

121 stat ic struct fpgafs l ldrv fpgafs l ldrv rag = {
.name = ”rag ” ,

123 . in i t = &fpgafs init rag ,

. exit = &fpgafs exit rag ,

125 . send = &fpgafs send data rag ,

. recv = &fpgafs recv data rag ,

127 . read load = NULL,

. write load = NULL,

129 } ;

131 /∗ i n i t e x i t f u n c t i o n s . . . ∗/

int in i t fpgafs l ldrv rag init (void )

133 {
return fpgafs register l ldrv (& fpgafs l ldrv rag ) ;

135 }

137 void exit fpgafs l ldrv rag exit (void )

{
139 fpgafs unregister l ldrv (& fpgafs l ldrv rag ) ;

}
141

module init ( fpgafs l ldrv rag init ) ;

143 module exit ( fpgafs l ldrv rag exit ) ;

145 MODULELICENSE( ”GPL” ) ;

MODULEAUTHOR( ”Benjamin K r i l l <ben@codiert . org>” ) ;

Listing 4.5: Raggedstone Low Level Driver
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4.2.3 System Library

The system library is build as shared library. The big advantages of a shared

library are that every task shares the same memory space for the library. From

this it follows that lesser pages are needed in RAM which cuts down paging and

reduced of the overall memory footprint. A second advantage is that bug fixes can

be distribute without relinking all applications based on the library. Furthermore

not linking libraries into every application can save disk space and also have secu-

rity advantages.

To build a shared library each file has to be compiled to an object file with the

GCC parameter ”-fPIC”. After each file is compiled, all objects have to be linked

with the parameters ”shared -Wl,-soname”. The listing 4.6 shows the make file

which will be used to build the library.

CFLAGS=−c −fPIC

2 CC = gcc

4 SRCS = l i b f pga . c

OBJS = $ (SRCS:%. c=%.o )

6

l i b f pga : ${OBJS}
8 ${CC} −shared −Wl,−soname ,$@ . so . 1 −o $@ . so . 1 . 0 . 1 $ˆ

10 clean :

rm ∗ . o ∗ . so .∗

Listing 4.6: Shared Library Makefile
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4.2.4 Code Samples

This section shows some sample source code to use the system library. Furthermore

the section includes some basic operations to use the virtual filesystem. Addition-

ally a sample implementation of a low level driver is shown.

Application

Listing 4.7 shows a sample application using the userspace library libfpga (de-

scribed in 3.4.2). The userspace library gives a more generalised interface to the

application developer. As described in 3.4.2 the function called in line 23 is used

to create a new context with the specified name and loads the given file descrip-

tor into the accelerator. After successfully creating the context a loop sends and

receives data trough the libfgpa functions (line 34, 39). The loop will stop when

the status of the accelerator is bigger than ten (line 29).

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Benjamin K r i l l <ben@cod ie r t . org>

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <s t d i o . h>

5 #include <s t d l i b . h>

#include <sys / types . h>

7 #include <sys / s t a t . h>

#include < f c n t l . h>

9 #include <errno . h>

#include < l i b f p g a . h>

11

int

13 main( int argv , char ∗∗argc )

{
15 int fd , sta , rnd , i ;

char ∗c , buf [ 4 ] ;

17

i f ( ( fd = open( ” tdat ” , ORDONLY, 0) ) == −1 ) {
19 printf ( ”ERROR−1: %s\n” , strerror ( errno ) ) ;

return −1;

21 }

23 i f ( fpgafs create context ( fd , ”dbg” ) == −1) {
printf ( ”ERROR−2: Cannot c r ea t e f p ga f s context\n” ) ;

25 close ( fd ) ;

return −1;

27 }

29 while ( fpgafs get stat ( ) < 0x10 ) {
rnd = rand ( ) ;

31 c = ( char ∗)&rnd ;

printf ( ” wr i t e data : %x\n” ,c [ 0 ] , c [ 1 ] , c [ 2 ] , c [ 3 ] ) ;

33 i f ( ( sta=fpgafs send data(&c [ 0 ] , 4) ) != 4) {
printf ( ”ERROR−3: Cannot send s p e c i f i e d length (%d)\n” , sta ) ;
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35 return −1;

}
37

i f ( ( sta=fpgafs recv data(&c [ 0 ] , 4) ) != 4) {
39 printf ( ”ERROR−3: Cannot send s p e c i f i e d length (%d)\n” , sta ) ;

return −1;

41 }
printf ( ” read data : %x\n” ,buf [ 0 ] , buf [ 1 ] , buf [ 2 ] , buf [ 3 ] ) ;

43 }
return 0 ;

45 }

Listing 4.7: Sample FPGAFS Application

Filesystem Operations

An example how the framework is working is shown in listing 4.8. The first two

lines describe the loading of the framework module and the debug low level driver.

Good to see in line 3-5 is the dependency of the low level driver to the framework.

Line 6 shows the filesystems registered in the kernel (other listed filesystems are

removed). After creating a directory the filesystem is mounted in line 9. To see if

the filesystem is mounted line 10-11 provides the currently mounted filesystems.

After loading and mounting the filesystem it is possible to create contexts to work

with an accelerator. In line 12 a context will be established by creating a directory.

After creation the content in line 14 is available. This is the defined content of the

framework description. To see if the debug low level driver works operations like

”echo” and ”dd” can be used. Line 15-17 shows these operations applied on the

FPGAFS files.

1 $ insmod fpgafs .ko

$ insmod fpgafs lldrv dbg .ko

3 $ lsmod

fpgafs lldrv dbg 7044 0

5 fpgafs 14876 1 fpgafs lldrv dbg

$ cat /proc/ fi lesystems

7 nodev fpgafs

$ mkdir fpgafs

9 $ mount −t fpgafs non fpgafs

$ mount
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11 non on / fpgafs type fpgafs (rw)

$ mkdir foobar

13 $ l s foobar/

cmd din dout lldrv load stat

15 $ echo ”1234” > foobar/ load

$ dd i f=foobar/ load of=test bs=4 count=1

17 $ xxd test

0000000: 1234 0000

Listing 4.8: Sample FPGAFS Filesystem Operations

Low Level Driver

To write a low level driver the developer only has to take notice of the FPGAFS

low level driver structure. During the registration the structure delivers each func-

tion which will be called from the generalised functions. The header file in the

development directory has the structure definition included and each low level

driver has to include this file. Listing 4.9 shows parts of a sample driver which

was implemented during the development phase of the whole FPGAFS to have a

low level driver which demonstrates and tests the functionality of the filesystem.

#include ” f pga f s . h”

2

#define MEM SIZE 255

4 /∗ some t e s t memory ∗/

stat ic char ∗mem;

6

stat ic int fpgafs send data dbg ( struct fpga context ∗ctx , const char user ∗buf , int len )

8 {
u32 cp = 0;

10 u8 user ∗usr ;

[ . . . ]

12 while (cp < len ) {
usr = (u8∗)&buf [ cp ] ;

14 i f ( get user (mem[ cp ] , usr ) )

return −EFAULT;

16 cp++;

}
18

return len ;

20 }

22 stat ic int fpgafs recv data dbg ( struct fpga context ∗ctx , unsigned char ∗buf , int len )

{
24 len = ( len > MEM SIZE) ?MEM SIZE: len ;

i f ( copy to user (buf , mem, len ) )
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26 return −EFAULT;

28 return len ;

}
30

stat ic int fpgafs read load dbg ( struct fpga context ∗ctx , unsigned char ∗buf , int len )

32 {
[ . . . ]

34 return len ;

}
36

stat ic int fpgafs write load dbg ( struct fpga context ∗ctx , const char user ∗buf , int len )

38 {
[ . . . ]

40 return len ;

}
42

stat ic int fpgafs init dbg (void )

44 {
mem = kmalloc (MEM SIZE,GFPUSER) ;

46 return 0 ;

}
48

stat ic int fpgafs exit dbg (void )

50 {
kfree (mem) ;

52 return 0 ;

}
54

stat ic struct fpgafs l ldrv fpgafs lldrv dbg = {
56 .name = ”dbg” ,

. in i t = fpgafs init dbg ,

58 . exit = fpgafs exit dbg ,

. send = &fpgafs send data dbg ,

60 . recv = &fpgafs recv data dbg ,

.cmd = NULL;

62 . stat = NULL;

. read load = &fpgafs read load dbg ,

64 . write load = &fpgafs write load dbg ,

} ;

66

/∗ i n i t e x i t f u n c t i o n s . . . ∗/

68 int in i t fpgafs l ldrv dbg init (void )

{
70 return fpgafs register l ldrv (& fpgafs lldrv dbg ) ;

}
72

void exit fpgafs l ldrv dbg exit (void )

74 {
fpgafs unregister l ldrv (& fpgafs lldrv dbg ) ;

76 }

78 module init ( fpgafs l ldrv dbg init ) ;

module exit ( fpgafs l ldrv dbg exit ) ;

80

MODULELICENSE( ”GPL” ) ;

82 MODULEAUTHOR( ”Benjamin K r i l l <ben@codiert . org>” ) ;

Listing 4.9: Sample FPGAFS Low Level Driver

It can be seen in line 76-80 the low level driver is an additional Linux Kernel

module. It can be loaded and unloaded during the operation of the kernel. The
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only and important dependency are the functions to register and unregister the

driver which will be done in line 68 and 75. These functions only need the low

level driver structure as parameter. The structure is filled in line 55-63 with all

needed members. All members except the ”name” field are function pointers, so

they will be set with a pointer to a defined function in this file. From line 7 to 55

all functions are defined which are included in the structure.

The sample gives a short overview how to write a low level driver for the FPGAFS.

A more specific driver was developed for the used FPGA. Functionality inside the

driver is to search the FPGA on the PCI bus and map the memory regions inside a

kernel space area. Furthermore the driver handles the send and receive functions.
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4.3 FPGA

This section is about the implementation details of the VHDL cores.

4.3.1 Top Design (top acc.vhd)

This file is the top design file for the whole project. It integrates all different cores

into one design. This design can be synthesized with a proper pin assignment and

programmed to the FPGA board. The entity of the top design has all needed

signals like the PCI signals and some signals for a digital 7-segment display. The

programming will be done with a JTAG cable.

4.3.2 Whisbone FIFO Queue

As described in 3.3 there are two different FIFO queue implementations. One for

incoming data and one for outgoing data. Both implementations have different

interfaces to the accelerator, but both have the same Whisbone interface.

wb fifo in.vhd

This file includes the Whisbone FIFO incoming implementation. The entity de-

scribes the Whisbone interface which will be used for the shared bus implemen-

tation of the bus. Further it describes the accelerator interface which consists of

three signals. The ”data o” signal is the 16 Bit width signal to the accelerator.

The signal always points to the first position of the queue. ”dcnt o” is a counter

which shows the number of pending data in the queue. With the ”dack i” signal

the accelerator can acknowledge the currently pending data on the bus. This will

remove the entry in the queue and the next data will be available.

Furthermore the entity has a generic entry. This entry sets the address of the core

on the Whisbone bus. With this method it is possible to use a lot of instances of

this core with different addresses on the bus. Whenever this core will be instan-

tiated the generic mapping should be done. If no generic mapping is given the
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default value will be used. Listing 4.10 shows the implementation.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Benjamin K r i l l <ben@cod ie r t . org>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 l ibrary IEEE ;

use IEEE .STD LOGIC 1164 .ALL;

6 use IEEE .STD LOGIC ARITH.ALL;

use IEEE .STD LOGIC UNSIGNED.ALL;

8 use IEEE . numeric std . a l l ;

10 entity wb fifo in i s

generic (

12 pci addr off : std logic vector (24 downto 1) := x”000000”

) ;

14 port (

c lk i : in std logic ;

16 nrst i : in std logic ;

wb adr i : in std logic vector (24 downto 1) ;

18 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

20 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

22 wb stb i : in std logic ;

wb cyc i : in std logic ;

24 wb ack o : out std logic ;

wb err o : out std logic ;

26 wb int o : out std logic ;

28 data o : out std logic vector (15 downto 0) ;

dack i : in std logic ;

30 dcnt o : out std logic vector (3 downto 0)

) ;

32 end wb fifo in ;

34 architecture wb fifo behav of wb fifo in i s

type mem is ARRAY(0 to 15) of std logic vector (15 downto 0) ;

36 signal f i f o : mem;

signal dcnt ,dpos : integer range 0 to 15 ;

38 signal ws fi , ws fid : std logic ;

signal ws start : std logic ;

40 begin

42 −− c r e a t e a t i n y w r i t e s t r o b e

process ( clk i , nrst i , wb stb i )

44 begin

i f nrst i = ’0 ’ then

46 ws fi <= ’0 ’ ;

ws fid <= ’0 ’ ;

48 ws start <= ’0 ’ ;

e l s i f ( clk i ’ event and c lk i = ’1 ’ ) then

50 i f wb stb i = ’1 ’ then

ws fi <= ’1 ’ ;

52 else

ws fi <= ’0 ’ ;

54 end i f ;

ws fid <= ws fi ;

56 ws start <= ws fi and not ws fid ;

end i f ;

58 end process ;

60 −− data in / ou tpu t p r o c e s s

process ( clk i , nrst i )

62 begin
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i f nrst i = ’0 ’ then

64 dcnt <= 0;

dpos <= 0;

66 e l s i f ( clk i ’ event and c lk i = ’1 ’ ) then

i f ws start = ’1 ’ and wb we i = ’1 ’ and wb adr i = pci addr off then

68 f i f o (dcnt ) <= wb dat i ;

dcnt <= dcnt + 1;

70 end i f ;

i f dack i = ’1 ’ then

72 dpos <= dpos + 1;

end i f ;

74 end i f ;

end process ;

76

wb ack o <= ws start when wb adr i = pci addr off e lse ’ 0 ’ ;

78 dcnt o <= conv std logic vector (dcnt − dpos , 4) ;

data o <= f i f o (dpos ) ;

80 end wb fifo behav ;

Listing 4.10: VHDL: Outgoing FIFO

wb fifo out.vhd

The entity of the FIFO queue for outgoing transfers consists of the Whisbone de-

scription and two signals for the accelerator interface. The ”data i” signal is the

16 Bit width signal to the accelerator, the signal points to the next position in the

queue. ”dsel i” is the signal to signalise the queue that the data signal has valid

data and the data can be put from the queue. This will set the data pointer to

the next free position inside the queue.

This implementation has a generic entity. Which can be used for more instances

with different addresses on the Whisbone bus. Listing 4.11 shows the implemen-

tation.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Benjamin K r i l l <ben@cod ie r t . org>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 l ibrary IEEE ;

use IEEE .STD LOGIC 1164 .ALL;

6 use IEEE .STD LOGIC ARITH.ALL;

use IEEE .STD LOGIC UNSIGNED.ALL;

8 use IEEE . numeric std . a l l ;

10 entity wb fifo out i s

generic (

12 pci addr off : std logic vector (24 downto 1) := x”000000”

) ;

14 port (

c lk i : in std logic ;

16 nrst i : in std logic ;
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wb adr i : in std logic vector (24 downto 1) ;

18 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

20 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

22 wb stb i : in std logic ;

wb cyc i : in std logic ;

24 wb ack o : out std logic ;

wb err o : out std logic ;

26 wb int o : out std logic ;

28 data i : in std logic vector (15 downto 0) ;

dws i : in std logic

30 ) ;

end wb fifo out ;

32

architecture wb fifo behav of wb fifo out i s

34 type mem is ARRAY(0 to 15) of std logic vector (15 downto 0) ;

signal f i f o : mem;

36 signal dcnt ,dpos : integer range 0 to 15 ;

signal ws fi , ws fid : std logic ;

38 signal ws start : std logic ;

begin

40

−− c r e a t e a t i n y w r i t e s t r o b e

42 process ( clk i , nrst i , wb stb i )

begin

44 i f nrst i = ’0 ’ then

ws fi <= ’0 ’ ;

46 ws fid <= ’0 ’ ;

ws start <= ’0 ’ ;

48 e l s i f ( clk i ’ event and c lk i = ’1 ’ ) then

i f wb stb i = ’1 ’ then

50 ws fi <= ’1 ’ ;

else

52 ws fi <= ’0 ’ ;

end i f ;

54 ws fid <= ws fi ;

ws start <= ws fi and not ws fid ;

56 end i f ;

end process ;

58

−− data in / ou tpu t p r o c e s s

60 process ( clk i , nrst i )

begin

62 i f nrst i = ’0 ’ then

dcnt <= 0;

64 dpos <= 0;

e l s i f ( clk i ’ event and c lk i = ’1 ’ ) then

66 i f ws start = ’1 ’ and wb we i = ’0 ’ and wb adr i = pci addr off then

wb dat o <= f i f o (dpos ) ;

68 dpos <= dpos + 1;

end i f ;

70 i f dws i = ’1 ’ then

f i f o (dcnt ) <= data i ;

72 dcnt <= dcnt + 1;

end i f ;

74 end i f ;

end process ;

76

wb ack o <= ws start when wb adr i = pci addr off e lse ’ 0 ’ ;

78 end wb fifo behav ;

Listing 4.11: VHDL: Outgoing FIFO
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4.3.3 PCI Core

As already mentioned in 3.3 the PCI Core is a core developed by the OpenCores

project. The core is licensed to the LGPL license. The following list shows all files

describing the PCI core.

• pci32tlite.vhd

PCI Core top file. This core is limited to 32 Bit buses. It provides on BAR0

an address space of 32 MByte. This 32 MByte address space is directly

connected to the Whisbone bus. The core has a 16 bit data bus.

• pcidec.vhd

This file includes the memory and configuration decoding. It also serves

some of the control PCI signals.

• pcipargen.vhd

This is the parity generator for PCI transactions. This will be done during

the data phase of a read cycle.

• pciwbsequ.vhd

This file includes the final state machine for the PCI to Whisbone interface.

• sync.vhd

Synchronization functions.

• pcidmux.vhd

This file includes the multiplexer between the 16 Bit Whisbone data interface

and the 32 Bit PCI bus.

• pciregs.vhd

This file implements PCI registers like VendorID, DeviceID, RevisionID,

ClassCode, SubsystemID and SubsystemVID.

In general the complete core was not modified. Only little changes were made to

get the core running. Also the pin assignment had to be done to get the board

working. With this core it is possible to reach a theoretical bandwidth of 0,132
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GByte/s. The bandwidth is calculated with the following formula.

32bit ∗ 33MHz = 32∗33∗106

8 [Byte/s] = 0, 132[GByte/s]

The used PCI bus has a width of 32 bit and runs with 33 MHz with these values

the stated bandwidth can be calculated.

4.3.4 Whisbone Accelerator (wb acc.vhd)

This file includes the two FIFO queues, the accelerator logic as well as the Whis-

bone arbiter. The arbiter manages the shared Whisbone bus. The arbitration is

done by addresses which are delivered by the PCI core. The arbiter handles all

signals going from the Whisbone slaves to the master. More specific, the handled

signals are ”wb ack o”, ”wb err o”, ”wb int o” and ”wb dat o” signal. These sig-

nals will be multiplexed to guarantee that only one slave communicates on the bus.

The current implementation integrates the incoming FIFO queue and the outgo-

ing FIFO queue. With this implementation it is possible to write data into the

incoming queue. The incoming queue is mapped to the address offset ”0x0”. If

the Linux driver writes into this region, the written data is filled into the queue.

Further the implementation transfers the data directly to the outgoing queue. The

outgoing queue is mapped to the address offset ”0x20”. So the Linux driver can

read back the data written into the incoming queue. For further development a

acceleration logic should be integrated between the incoming and outgoing queue.

An integration of a PCI interrupt which will activated when new data is available

in the outgoing queue is also thinkable. This will enhance the overall performance

of the whole framework. With this method the userspace application doesn’t need

to poll the whole time. This extension will influence each part of the framework.

The low level driver for the Raggedstone board needs the possibility to receive an

interrupt and also the PCI core needs the extension to trigger the interrupt line.

Listing 4.12 shows the instantiation of the queues and the Whisbone arbiter.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Benjamin K r i l l <ben@cod ie r t . org>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 l ibrary IEEE ;

use IEEE .STD LOGIC 1164 .ALL;

6 use IEEE .STD LOGIC ARITH.ALL;

use IEEE .STD LOGIC UNSIGNED.ALL;

8

entity wb acc i s

10 port (

c lk i : in std logic ;

12 nrst i : in std logic ;

wb adr i : in std logic vector (24 downto 1) ;

14 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

16 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

18 wb stb i : in std logic ;

wb cyc i : in std logic ;

20 wb ack o : out std logic ;

wb err o : out std logic ;

22 wb int o : out std logic

) ;

24 end wb acc ;

26 architecture wb acc behav of wb acc i s

28 component wb fifo in

generic (

30 pci addr off : std logic vector (24 downto 1) := x”000000”

) ;

32 port (

c lk i : in std logic ;

34 nrst i : in std logic ;

wb adr i : in std logic vector (24 downto 1) ;

36 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

38 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

40 wb stb i : in std logic ;

wb cyc i : in std logic ;

42 wb ack o : out std logic ;

wb err o : out std logic ;

44 wb int o : out std logic ;

46 data o : out std logic vector (15 downto 0) ;

dack i : in std logic ;

48 dcnt o : out std logic vector (3 downto 0)

) ;

50 end component ;

52 component wb fifo out

generic (

54 pci addr off : std logic vector (24 downto 1) := x”000000”

) ;

56 port (

c lk i : in std logic ;

58 nrst i : in std logic ;

wb adr i : in std logic vector (24 downto 1) ;

60 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

62 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

64 wb stb i : in std logic ;

wb cyc i : in std logic ;
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66 wb ack o : out std logic ;

wb err o : out std logic ;

68 wb int o : out std logic ;

70 data i : in std logic vector (15 downto 0) ;

dws i : in std logic

72 ) ;

end component ;

74 type acc states i s (IDLE,TRANS) ;

signal acc sm : acc states ;

76 signal acc sm nxt : acc states ;

78 signal fin data o : std logic vector (15 downto 0) ;

signal f in dack i : std logic ;

80 signal fin dcnt o : std logic vector (3 downto 0) ;

signal fout data i : std logic vector (15 downto 0) ;

82 signal fout dws i : std logic ;

84 signal wb ack in o : std logic ;

signal wb err in o : std logic ;

86 signal wb int in o : std logic ;

signal wb dat in o : std logic vector (15 downto 0) ;

88

signal wb ack out o : std logic ;

90 signal wb err out o : std logic ;

signal wb int out o : std logic ;

92 signal wb dat out o : std logic vector (15 downto 0) ;

94 begin

process ( nrst i , c lk i )

96 begin

i f nrst i = ’0 ’ then

98 acc sm <= IDLE ;

e l s i f rising edge ( c lk i ) then

100 acc sm <= acc sm nxt ;

end i f ;

102 end process ;

104 process (acc sm , fin dcnt o )

begin

106 f in dack i <= ’0 ’ ;

fout dws i <= ’0 ’ ;

108 case acc sm is

when IDLE =>

110 i f fin dcnt o /= x”0” then

acc sm nxt <= TRANS;

112 else acc sm nxt <= IDLE ;

end i f ;

114 when TRANS =>

f in dack i <= ’1 ’ ;

116 fout dws i <= ’1 ’ ;

acc sm nxt <= IDLE ;

118 end case ;

end process ;

120

fout data i <= f in data o ;

122

f in : wb fifo in

124 generic map ( pci addr off => x”000000” )

port map (

126 c lk i => clk i ,

nrst i => nrst i ,

128 wb adr i => wb adr i ,

wb dat o => wb dat in o ,

130 wb dat i => wb dat i ,

wb sel i => wb sel i ,
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132 wb we i => wb we i ,

wb stb i => wb stb i ,

134 wb cyc i => wb cyc i ,

wb ack o => wb ack in o ,

136 wb err o => wb err in o ,

wb int o => wb int in o ,

138

data o => fin data o ,

140 dack i => f in dack i ,

dcnt o => fin dcnt o

142 ) ;

144 fout : wb fifo out

generic map ( pci addr off => x”000010” )

146 port map (

c lk i => clk i ,

148 nrst i => nrst i ,

wb adr i => wb adr i ,

150 wb dat o => wb dat out o ,

wb dat i => wb dat i ,

152 wb sel i => wb sel i ,

wb we i => wb we i ,

154 wb stb i => wb stb i ,

wb cyc i => wb cyc i ,

156 wb ack o => wb ack out o ,

wb err o => wb err out o ,

158 wb int o => wb int out o ,

160 data i => fout data i ,

dws i => fout dws i

162 ) ;

164 wb ack o <= wb ack out o when wb adr i = x”000010” else wb ack in o ;

wb err o <= wb err out o when wb adr i = x”000010” else wb err in o ;

166 wb int o <= wb int out o when wb adr i = x”000010” else wb int in o ;

wb dat o <= wb dat out o ;

168

end wb acc behav ;

Listing 4.12: VHDL: Accelerator Implementation
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5 Conclusions

5.1 Overall Aims

Compared with the aims stated in section 1.2, I rate that this dissertation reached

a lot of the aims. The first aim, to develop a system which can be reconfigured,

was reached. The only deduction is that the current implementation does not have

a low level driver include for the reconfiguration during runtime. This is due to the

hardware change during the thesis. The planned originally method was to utilise

a System ACE interface to transfer the design into the FPGA. Currently the used

FPGA board only has a JTAG interface to programme the board. However, also

for this board it should be possible to programme the board during runtime. In

further implementations the JTAG interface should be used to programme the

board.

The second aim, to create interfaces between all know related parts has been ful-

filled. Each interface has a well defined programming interface. The userspace

library provides an API for the developer and creates a further abstraction level

to the virtual filesystem. The virtual filesystem provides an interface between

userspace and kernelspace. It provides a well defined structure to communicate

with the different hardware components which could be integrated with the hard-

ware low level driver abstraction interface. The low level driver interface provides

the possibility to write a specific driver for each hardware and provides a defined

interface to the FPGAFS framework. Also the design of the internal reconfigurable

device is solidified the internals of the low level driver. Thus the designed FPGA

interface could be totally hidden to the upper layers. The designed FPGA inter-

face can be changed and only an upgrade of the low level driver is necessary. In

combination, the three interfaces provide a very flexible framework to create a to-
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tal free programmable and well defined programming environment. The complete

framework gets more flexiblity with the low level driver interface, because every

new hardware component can provide its own low level parts and initialisations.

The third and last aim, to use existing expertise as well as learn new techniques,

was the easiest goal to fulfil and was of course reached. A good example of fulfilling

this goal is the programming effort required to implement the different parts of

this project.

5.2 Implementation Specific Goals

The aims and objectives formulated during section 1.3 have proved to be quite

reasonable. During the whole time the dissertation was under preparation these

aims did not change and could therefore be followed more or less pretty closely.

Although the target system has changed completely during the interim report and

the writing this document. An issue on the target system occurs and the target

has to be changed and not the whole dissertation scope could be done. The change

required a change of the FPGA interface which is now a PCI bus between the host

CPU and the FPGA. Also the reconfiguration of accelerator has been changed.

The first target should provide a Xilinx System ACE interface to reconfigure the

part, but the board used in this dissertation only had a JTAG port to reconfigure

the parts on the board. This is a change which is not solved within this disseration

and will be left for further developments.

The next aim from section 1.3 is to provide an FPGA interface between the host

CPU/southbridge and the reconfigurable part. This interface is necessary to send

and receive data and commands to control the logic on the reconfigurable part.

This goal is reached by using a PCI core which provides an abstraction between

a PCI bus and a Whisbone bus. The complete logic for sending and receiving

data is done behind the Whisbone interface. To connect more than one slave to

the bus a shared bus implementation has been done, so a lot of slaves can be

connected to the bus and each slave has a different address which can be called

from the PCI bus. To buffer commands or data a FIFO queue implementation

has been developed. It also provides an easy to use interface to an accelerator.
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Each accelerator can have multiple incoming and outgoing queues to transfer data

and status to the low level driver and also to receive data and commands. The

implemented queues have the possibility to get instantiated multiple times. This

is done with a generic value in VHDL which must be set on each instantiation.

This is a common used technique in the VHDL implementation.

The next aim from section 1.3 is to create a device driver for the used hardware and

an API for the developer. These aims are both fulfilled. A complete framework has

been developed which provides an interface through the virtual filesystem. As well

as an interface through the system library. The virtual filesystem is a combination

of a management module, a filesystem representation and low level drivers. The

filesystem representation provides the interface between userspace and kernelspace

with standard systemcalls. Also a usage permission is done by file permissions, so

each accelerator context can be secured by file permissions. The representation

also gives a standardised interface for each context. To provide a framework for

several hardware parts the management module gives the possibility to register

new low level driver to communicate with the hardware. The low level driver

has all hardware specific functions included and exports the functions needed by

the framework. So each layer hides the more specific implementations behind

generalised functions. Additional a system library has been implemented. This

library implements all standard calls to a developer which relieves work of the

developer and reduces code duplication. Another important point is that the

source is extensible to fulfil the further extension for this aim.

During the whole development phase different short test implementations were

created. For this different testcases were developed and implemented to verify

each programmed component. Furthermore an application was developed which

make use of the system library and of the used FPGA board. This application

test the whole chain from the system library to the real hardware. So with this

test it can be shown that the implemented source is fully working.

For further developments the FPGAFS will be published to the Open Source

community in the next month. Also an implementation of a functional accelerator

will be done, to show the benefits of such a framework.
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5.3 Final Conclusion

All together the dissertation was a very good experience where every layer of a

computer system was touched. Not only the software side was esteemed but also

the hardware perspectives are mentioned. This gave a very deep insight into the

development and engineering of a whole target system which not only mention the

hardware side. The dissertation gave also a very deep insight into the Linux kernel

and its different layers like the virtual filesystem layer or the PCI subsystem. Not

only the understanding of already available subsystems was necessary but also

the designing and developing of new parts was done. The complete interacting

of all parts was very fantastic and the leverage of the reconfigurable devices was

a very great experience. So, the hope is that after releasing the project to the

Open Source Community, further developments will be done and more accelerator

boards can be supported.
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A Appendix

VHDL Top Design (top acc.vhd):

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Benjamin K r i l l <ben@cod ie r t . org>

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l ibrary ieee ;

5 use ieee . std logic 1164 . a l l ;

7 entity pci acc i s

port (

9 −− General

PCI CLK : in std logic ;

11 PCI nRES : in std logic ;

13 −− PCI t a r g e t 32 b i t s

PCI AD : inout std logic vector (31 downto 0) ;

15 PCI CBE : in std logic vector (3 downto 0) ;

PCI PAR : out std logic ;

17 PCI nFRAME : in std logic ;

PCI nIRDY : in std logic ;

19 PCI nTRDY : out std logic ;

PCI nDEVSEL : out std logic ;

21 PCI nSTOP : inout std logic ;

PCI IDSEL : in std logic ;

23 PCI nPERR : inout std logic ;

PCI nSERR : inout std logic ;

25 PCI nINT : out std logic ;

PCI nREQ : in std logic ;

27 PCI nGNT : in std logic ;

29 −− 7 seg

DISP SEL : inout std logic vector (3 downto 0) ;

31 DISP LED : out std logic vector (6 downto 0) ;

33 −− debug s i g n a l s

LED INIT : out std logic ;

35 LED ACCESS : out std logic ;

LED ALIVE : out std logic ;

37

PREVENTSTRIPPINGOFUNUSED INPUTS : out std logic

39 ) ;

end pci acc ;

41

architecture pci acc arch of pci acc i s

43

component pci32t l i te

45 port (

−− General

47 clk33 : in std logic ;

nrst : in std logic ;

67



Appendix A. Appendix

49

−− PCI t a r g e t 32 b i t s

51 ad : inout std logic vector (31 downto 0) ;

cbe : in std logic vector (3 downto 0) ;

53 par : out std logic ;

frame : in std logic ;

55 irdy : in std logic ;

trdy : out std logic ;

57 devsel : out std logic ;

stop : out std logic ;

59 idse l : in std logic ;

perr : out std logic ;

61 serr : out std logic ;

intb : out std logic ;

63

−− Master whisbone

65 wb adr o : out std logic vector (24 downto 1) ;

wb dat i : in std logic vector (15 downto 0) ;

67 wb dat o : out std logic vector (15 downto 0) ;

wb sel o : out std logic vector (1 downto 0) ;

69 wb we o : out std logic ;

wb stb o : out std logic ;

71 wb cyc o : out std logic ;

wb ack i : in std logic ;

73 wb err i : in std logic ;

wb int i : in std logic ;

75

−− debug s i g n a l s

77 debug init : out std logic ;

debug access : out std logic

79 ) ;

end component ;

81

83 component wb 7seg

port (

85 −− General

c lk i : in std logic ;

87 nrst i : in std logic ;

89 −− Master whisbone

wb adr i : in std logic vector (24 downto 1) ;

91 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

93 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

95 wb stb i : in std logic ;

wb cyc i : in std logic ;

97 wb ack o : out std logic ;

wb err o : out std logic ;

99 wb int o : out std logic ;

101 −− 7 seg

DISP SEL : inout std logic vector (3 downto 0) ;

103 DISP LED : out std logic vector (6 downto 0)

) ;

105 end component ;

107 component wb acc

port (

109 −− General

c lk i : in std logic ;

111 nrst i : in std logic ;

113 −− Master whisbone

wb adr i : in std logic vector (24 downto 1) ;
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115 wb dat o : out std logic vector (15 downto 0) ;

wb dat i : in std logic vector (15 downto 0) ;

117 wb sel i : in std logic vector (1 downto 0) ;

wb we i : in std logic ;

119 wb stb i : in std logic ;

wb cyc i : in std logic ;

121 wb ack o : out std logic ;

wb err o : out std logic ;

123 wb int o : out std logic

) ;

125 end component ;

127 signal wb adr : std logic vector (24 downto 1) ;

signal wb dat out : std logic vector (15 downto 0) ;

129 signal wb dat in : std logic vector (15 downto 0) ;

signal wb sel : std logic vector (1 downto 0) ;

131 signal wb we : std logic ;

signal wb stb : std logic ;

133 signal wb cyc : std logic ;

signal wb ack : std logic ;

135 signal wb err : std logic ;

signal wb int : std logic ;

137

−−a t t r i b u t e s : s t r i n g ; −− SAVE NET FLAG

139 −−a t t r i b u t e s o f PCI nREQ : s i g n a l i s ” yes ” ;

−−a t t r i b u t e s o f PCI nGNT : s i g n a l i s ” yes ” ;

141 begin

LED ALIVE <= ’1 ’ ;

143 PREVENTSTRIPPINGOFUNUSED INPUTS <= PCI nREQ and PCI nGNT;

−−PCI nREQ <= ’Z ’ ;

145 −−PCI nGNT <= ’Z ’ ;

147 −− PCI Core

u pci : component pci32t l i te

149 port map(

clk33 => PCI CLK,

151 nrst => PCI nRES,

ad => PCI AD,

153 cbe => PCI CBE,

par => PCI PAR,

155 frame => PCI nFRAME,

irdy => PCI nIRDY,

157 trdy => PCI nTRDY,

devsel => PCI nDEVSEL,

159 stop => PCI nSTOP,

idse l => PCI IDSEL ,

161 perr => PCI nPERR,

serr => PCI nSERR,

163 intb => PCI nINT ,

wb adr o => wb adr ,

165 wb dat i => wb dat out ,

wb dat o => wb dat in ,

167 wb sel o => wb sel ,

wb we o => wb we ,

169 wb stb o => wb stb ,

wb cyc o => wb cyc ,

171 wb ack i => wb ack ,

wb err i => wb err ,

173 wb int i => wb int ,

debug init => LED INIT,

175 debug access => LED ACCESS

) ;

177

−− f i f o

179 u wb fifo : component wb acc

port map(
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181 c lk i => PCI CLK,

nrst i => PCI nRES,

183 wb adr i => wb adr ,

wb dat o => wb dat out ,

185 wb dat i => wb dat in ,

wb sel i => wb sel ,

187 wb we i => wb we ,

wb stb i => wb stb ,

189 wb cyc i => wb cyc ,

wb ack o => open ,

191 wb err o => wb err ,

wb int o => wb int

193 ) ;

195 −− 7 segment

u wb 7seg : component wb 7seg

197 port map(

c lk i => PCI CLK,

199 nrst i => PCI nRES,

wb adr i => wb adr ,

201 wb dat o => open ,

wb dat i => wb dat in ,

203 wb sel i => wb sel ,

wb we i => wb we ,

205 wb stb i => wb stb ,

wb cyc i => wb cyc ,

207 wb ack o => wb ack ,

wb err o => open ,

209 wb int o => open ,

DISP SEL => DISP SEL ,

211 DISP LED => DISP LED

) ;

213 end pci acc arch ;

Listing A.1: VHDL: Top Design

Main Filesystem Implementation (inode.c):

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Benjamin Kril l <ben@codiert . org>

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <linux/module .h>

5 #include <linux/version .h>

#include <linux/ in i t .h>

7 #include <linux/ f s .h>

#include <linux/pagemap .h>

9 #include <linux/ slab .h>

11 #include ” f pga f s . h”

13 stat ic struct inode ∗ fpgafs al loc inode ( struct super block ∗sb ) ;

stat ic void fpgafs destroy inode ( struct inode ∗inode ) ;

15 stat ic void fpgafs delete inode ( struct inode ∗inode ) ;

stat ic struct inode ∗ fpgafs new inode ( struct super block ∗sb , int mode) ;

17

stat ic void fpgafs prune dir ( struct dentry ∗dir ) ;

19 int fpgafs mkdir ( struct inode ∗dir , struct dentry ∗dentry , int mode) ;

stat ic int fpgafs rmdir ( struct inode ∗dir , struct dentry ∗dentry ) ;

21

stat ic int fpgafs new fi le ( struct super block ∗sb , struct dentry ∗dentry ,

23 const struct f i le operations ∗fops , int mode,

struct fpga context ∗ctx ) ;

25 stat ic int fpgafs setattr ( struct dentry ∗dentry , struct iattr ∗attr ) ;
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27 const struct f i le operations fpgafs context foperations = {
.open = dcache dir open ,

29 // . release = fpgafs dir close ,

. l l seek = dcache dir lseek ,

31 . read = generic read dir ,

. readdir = dcache readdir ,

33 . fsync = simple sync file ,

} ;

35

const struct inode operations fpgafs simple dir inode operations = {
37 . lookup = simple lookup

} ;

39

const struct inode operations fpgafs dir inode operations = {
41 . lookup = simple lookup ,

.mkdir = fpgafs mkdir ,

43 . rmdir = fpgafs rmdir

} ;

45

stat ic struct kmem cache ∗ fpgafs inode cache ;

47

/∗ basic inode operations ∗/

49 stat ic struct inode ∗ fpgafs al loc inode ( struct super block ∗sb )

{
51 struct fpgafs inode info ∗ f s i ;

53 f s i = kmem cache alloc ( fpgafs inode cache , GFPKERNEL) ;

i f ( ! f s i )

55 return NULL;

57 f s i−>i ctx = NULL;

59 return &f s i−>vfs inode ;

}
61

stat ic void fpgafs destroy inode ( struct inode ∗inode )

63 {
kmem cache free ( fpgafs inode cache , FPGAFS I( inode ) ) ;

65 }

67 stat ic void fpgafs delete inode ( struct inode ∗inode )

{
69 // struct fpgafs inode info ∗ f s i = FPGAFS I( inode ) ;

71 // XXX: do some fpga interface operations . . . .

// i f ( f s i−>i ctx )

73 // put fpga context ( ei−>i ctx ) ;

clear inode ( inode ) ;

75 }

77 stat ic struct inode ∗ fpgafs new inode ( struct super block ∗sb , int mode)

{
79 struct inode ∗inode ;

81 inode = new inode ( sb ) ;

i f ( ! inode )

83 return inode ;

85 inode−>i mode = mode ;

inode−>i uid = current−>fsuid ;

87 inode−>i g id = current−>fsgid ;

inode−>i blocks = 0;

89 inode−>i atime = inode−>i mtime = inode−>i ctime = CURRENTTIME;

return inode ;

91 }
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93 /∗ FPGA FS spec i f i c functions ∗/

stat ic int f pga f s f i l l d i r ( struct dentry ∗dir , struct tree descr ∗ f i l e s ,

95 int mode, struct fpga context ∗ctx )

{
97 struct dentry ∗dentry ;

int ret ;

99

while ( f i l e s−>name && f i l e s−>name [ 0 ] ) {
101 ret = −ENOMEM;

dentry = d alloc name (dir , f i l e s−>name) ;

103 i f ( ! dentry )

goto out ;

105 ret = fpgafs new fi le (dir−>d sb , dentry , f i l e s−>ops ,

f i l e s−>mode & mode, ctx ) ;

107 i f ( ret )

goto out ;

109 f i l e s++;

}
111 return 0 ;

out :

113 fpgafs prune dir ( dir ) ;

return ret ;

115 }

117

/∗ spec i f i c operations ∗/

119 stat ic int fpgafs setattr ( struct dentry ∗dentry , struct iattr ∗attr )

{
121 struct inode ∗inode = dentry−>d inode ;

123 i f ( ( attr−>ia val id & ATTR SIZE) &&

( attr−>i a s i ze != inode−>i s i z e ) )

125 return −EINVAL;

return inode setattr ( inode , attr ) ;

127 }

129 stat ic int fpgafs new fi le ( struct super block ∗sb , struct dentry ∗dentry ,

const struct f i le operations ∗fops , int mode,

131 struct fpga context ∗ctx )

{
133 stat ic struct inode operations fpga f s f i l e iops = {

. setattr = fpgafs setattr ,

135 } ;

struct inode ∗inode ;

137 int ret ;

139 ret = −ENOSPC;

inode = fpgafs new inode (sb , S IFREG | mode) ;

141 i f ( ! inode )

goto out ;

143

ret = 0;

145 inode−>i op = &fpga f s f i l e iops ;

inode−>i fop = fops ;

147 inode−>i private = FPGAFS I( inode )−>i ctx = ctx ;

d add (dentry , inode ) ;

149 out :

return ret ;

151 }

153 int fpgafs mkdir ( struct inode ∗dir , struct dentry ∗dentry , int mode)

{
155 int ret ;

struct inode ∗inode ;

157 struct fpga context ∗ctx = NULL;
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159 ret = −ENOSPC;

inode = fpgafs new inode (dir−>i sb , mode | S IFDIR) ;

161 i f ( ! inode )

return ret ;

163

mutex lock(&inode−>i mutex ) ;

165

i f (dir−>i mode & S ISGID) {
167 inode−>i g id = dir−>i g id ;

inode−>i mode &= S ISGID ;

169 }

171 ctx = alloc fpga context ( ) ;

FPGAFS I( inode )−>i ctx = ctx ;

173 i f ( ! ctx )

goto unmutex ;

175

inode−>i op = &fpgafs simple dir inode operations ;

177 inode−>i fop = &simple dir operations ;

179 ret = f pga f s f i l l d i r (dentry , fpgafs dir contents , mode, ctx ) ;

ret = 0;

181 // i f ( ret ) {
// FREEE CONTENT

183 // goto unmutex ;

//}
185

d instantiate (dentry , inode ) ;

187 dget (dentry ) ;

dir−>i n l ink++;

189 dentry−>d inode−>i n l ink++;

191 unmutex :

mutex unlock(&inode−>i mutex ) ;

193 return ret ;

}
195

stat ic void fpgafs prune dir ( struct dentry ∗dir )

197 {
struct dentry ∗dentry , ∗tmp ;

199 //mutex lock(&dir−>d inode−>i mutex ) ;

l i st for each entry safe (dentry , tmp, &dir−>d subdirs , d u . d child ) {
201 spin lock(&dcache lock ) ;

spin lock(&dentry−>d lock ) ;

203 i f ( ! ( d unhashed (dentry ) ) && dentry−>d inode ) {
dget locked (dentry ) ;

205 d drop (dentry ) ;

spin unlock(&dentry−>d lock ) ;

207 simple unlink (dir−>d inode , dentry ) ;

spin unlock(&dcache lock ) ;

209 dput(dentry ) ;

} else {
211 spin unlock(&dentry−>d lock ) ;

spin unlock(&dcache lock ) ;

213 }
}

215 shrink dcache parent ( dir ) ;

//mutex unlock(&dir−>d inode−>i mutex ) ;

217 }

219 stat ic int fpgafs rmdir ( struct inode ∗dir , struct dentry ∗dentry )

{
221 /∗ remove a l l entries ∗/

free fpga context (FPGAFS I(dentry−>d inode )−>i ctx ) ;

223 fpgafs prune dir (dentry ) ;
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// fpgafs remove inode

225

return simple rmdir (dir , dentry ) ;

227 }

229 /∗ SUPERBLOCK operations ∗/

int fpga f s f i l l sb ( struct super block ∗sb , void ∗data , int s i lent )

231 {
struct inode ∗inode ;

233 int ret = −ENOMEM;

235 stat ic struct super operations fpgafs ops = {
// . read inode = fpgafs read inode ,

237 // . put super = fpgafs put super ,

. alloc inode = fpgafs alloc inode ,

239 . destroy inode = fpgafs destroy inode ,

. stat fs = simple statfs ,

241 . delete inode = fpgafs delete inode ,

. drop inode = generic delete inode ,

243 } ;

245 sb−>s maxbytes = MAX LFS FILESIZE ;

sb−>s blocksize = PAGE CACHE SIZE;

247 sb−>s blocksize bits = PAGECACHESHIFT;

sb−>s magic = FPGAFSMAGIC;

249 sb−>s op = &fpgafs ops ;

251 inode = fpgafs new inode (sb , S IFDIR | 0775) ;

i f ( ! inode )

253 return ret ;

255 inode−>i op = &fpgafs dir inode operations ;

inode−>i fop = &simple dir operations ;

257 FPGAFS I( inode )−>i ctx = NULL;

259 sb−>s root = d alloc root ( inode ) ;

i f ( ! sb−>s root )

261 return ret ;

263 return 0 ;

}
265

stat ic int fpgafs get sb ( struct file system type ∗ fs type ,

267 int flags , const char ∗dev name , void ∗data , struct vfsmount ∗mnt)

{
269 return get sb nodev ( fs type , f lags , data , fpga f s f i l l sb , mnt) ;

}
271

stat ic struct file system type fpgafs type = {
273 .owner = THISMODULE,

.name = ” fpga f s ” ,

275 . get sb = fpgafs get sb ,

. k i l l sb = kill anon super

277 } ;

279 stat ic void fpgafs init once (void ∗p , struct kmem cache ∗ cachep ,

unsigned long f lags )

281 {
struct fpgafs inode info ∗ f s i = p ;

283 inode init once(& f s i−>vfs inode ) ;

}
285

/∗ in i t exit functions . . . ∗/

287 int in i t fpgafs in i t (void )

{
289 fpgafs inode cache = kmem cache create ( ” f pga f s i n od e c a ch e ” ,
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s izeof ( struct fpgafs inode info ) , 0 ,

291 SLABHWCACHEALIGN, fpgafs init once , NULL) ;

i f ( ! fpgafs inode cache )

293 return −ENOMEM;

295 register f i lesystem (&fpgafs type ) ;

printk ( ” f p ga f s : Benjamin K r i l l <ben@codiert . org>\n” ) ;

297 printk ( ” f p ga f s : s u c c e s s f u l l loaded . . . \ n” ) ;

return 0 ;

299 }

301 void exit fpgafs exit (void )

{
303 kmem cache destroy ( fpgafs inode cache ) ;

unregister filesystem(&fpgafs type ) ;

305 }

307 module init ( fpgafs in i t ) ;

module exit ( fpgafs exit ) ;

309

MODULELICENSE( ”GPL” ) ;

311 MODULEAUTHOR( ”Benjamin K r i l l <ben@codiert . org>” ) ;

Listing A.2: FPGAFS: Main Filesystem Implementation

Low Level Driver Management (llmgmt.c):

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Benjamin Kril l <ben@codiert . org>

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <linux/pagemap .h>

5 #include <linux/kernel .h>

#include <linux/module .h>

7 #include <linux/ in i t .h>

#include <linux/mm.h>

9 #include ” f pga f s . h”

11 #define FPGAFSMAXLLDRV 3

13 stat ic struct fpgafs l ldrv ∗ l ldrv [FPGAFSMAXLLDRV] ;

stat ic struct fpgafs l ldrv ∗ l ldrv cur ;

15 stat ic int lldrv count = 0x0 ;

stat ic DEFINE SPINLOCK( fpgafs l ldrv lock ) ;

17

struct fpga context∗ alloc fpga context (void )

19 {
struct fpga context ∗ctx ;

21 ctx = kzalloc ( s izeof ∗ctx , GFPKERNEL) ;

i f ( ! ctx )

23 goto out ;

25 /∗ i n i t i a l i z e the struct∗/

ctx−>l ldrv = −1;

27

out :

29 return ctx ;

}
31

void free fpga context ( struct fpga context ∗ctx )

33 {
i f ( ctx−>load buf )

35 kfree ( ctx−>load buf ) ;
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37 kfree ( ctx ) ;

return ;

39 }

41 s s i ze t fpgafs send data ( struct f i l e ∗ f i l e , const char user ∗buf ,

s i ze t len , l o f f t ∗pos )

43 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

45 return ( fcur−>l ldrv > −1) ?

l ldrv [ fcur−>l ldrv ]−>send ( fcur , buf , len )

47 : −EBUSY;

}
49 //EXPORTSYMBOLGPL( fpgafs send data ) ;

51 s s i ze t fpgafs recv data ( struct f i l e ∗ f i l e , char user ∗buf ,

s i ze t len , l o f f t ∗pos )

53 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

55 return ( fcur−>l ldrv > −1) ?

l ldrv [ fcur−>l ldrv ]−>recv ( fcur , buf , len )

57 : −EBUSY;

}
59 //EXPORTSYMBOLGPL( fpgafs recv data ) ;

61 s s i ze t fpgafs write load ( struct f i l e ∗ f i l e , const char user ∗buf ,

s i ze t len , l o f f t ∗pos )

63 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

65 return ( fcur−>l ldrv > −1) ?

l ldrv [ fcur−>l ldrv ]−>write load ( fcur , buf , len )

67 : −EBUSY;

}
69 //EXPORTSYMBOLGPL( fpgafs write load ) ;

71 s s i ze t fpgafs read load ( struct f i l e ∗ f i l e , char user ∗buf ,

s i ze t len , l o f f t ∗pos )

73 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

75 return ( fcur−>l ldrv > −1) ?

l ldrv [ fcur−>l ldrv ]−>read load ( fcur , buf , len )

77 : −EBUSY;

}
79 //EXPORTSYMBOLGPL( fpgafs read load ) ;

81 /∗ set/get current low level driver ∗/

s s i ze t fpgafs read lldrv ( struct f i l e ∗ f i l e , char user ∗buf ,

83 s i ze t len , l o f f t ∗pos )

{
85 struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

s i ze t l = ( len > 5) ?5 : len ;

87 i f ( fcur−>l ldrv > −1) {
i f ( copy to user (buf , l ldrv [ fcur−>l ldrv ]−>name, l ) )

89 return −EFAULT;

} else {
91 return −EBUSY;

}
93 return l ;

}
95 //EXPORTSYMBOLGPL( fpgafs read lldrv ) ;

97 s s i ze t fpgafs write l ldrv ( struct f i l e ∗ f i l e , const char user ∗buf ,

s i ze t len , l o f f t ∗pos )

99 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

101 u32 cp = 0 , i ;

u8 user ∗usr ;
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103 unsigned char tmp [ 5 ] ;

s i ze t l = ( len > 5) ?5 : len ;

105

/∗ get name ∗/

107 while (cp < l ) {
usr = (u8∗)&buf [ cp ] ;

109 i f ( get user (tmp [ cp ] , usr ) )

return −EFAULT;

111 cp++;

}
113

for ( i =0; i < FPGAFSMAXLLDRV; i++)

115 i f ( l ldrv [ i ] != NULL) {
for (cp = 0; cp < l ; cp++) {

117 i f ( l ldrv [ i ]−>name [ cp ] != tmp [ cp ] )

break ;

119 }
i f (cp == l ) {

121 fcur−>l ldrv = i ;

return l ;

123 }
}

125

fcur−>l ldrv = −1;

127 return −1;

}
129 //EXPORTSYMBOLGPL( fpgafs write l ldrv ) ;

131 s s i ze t fpgafs read stat ( struct f i l e ∗ f i l e , char user ∗buf ,

s i ze t len , l o f f t ∗pos )

133 {
struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

135 return ( fcur−>l ldrv > −1) ?

l ldrv [ fcur−>l ldrv ]−>stat ( fcur , buf , len )

137 : −EBUSY;

}
139

s s i ze t fpgafs write cmd ( struct f i l e ∗ f i l e , const char user ∗buf ,

141 s i ze t len , l o f f t ∗pos )

{
143 struct fpga context ∗ fcur = ( struct fpga context ∗) f i l e−>private data ;

return ( fcur−>l ldrv > −1) ?

145 l ldrv [ fcur−>l ldrv ]−>cmd( fcur , buf , len )

: −EBUSY;

147 }

149 /∗ low level un−/register functions ∗/

int fpgafs register l ldrv ( struct fpgafs l ldrv ∗drv )

151 {
unsigned long f lags ;

153 int i ;

155 spin lock irqsave(& fpgafs l ldrv lock , f lags ) ;

i f ( lldrv count == FPGAFSMAXLLDRV)

157 return −EBUSY;

159 /∗ find free space ∗/

for ( i =0; i < FPGAFSMAXLLDRV; i++)

161 i f ( l ldrv [ i ] == NULL) {
l ldrv [ i ] = drv ;

163 break ;

}
165

i f ( l ldrv [ i ]−> in i t )

167 l ldrv [ i ]−> in i t ( ) ;
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169 l ldrv cur = l ldrv [ i ] ;

171 lldrv count++;

173 spin unlock irqrestore(& fpgafs l ldrv lock , f lags ) ;

return 0 ;

175 }
EXPORTSYMBOLGPL( fpgafs register l ldrv ) ;

177

int fpgafs unregister l ldrv ( struct fpgafs l ldrv ∗drv )

179 {
unsigned long f lags ;

181 int i ,k ;

183 spin lock irqsave(& fpgafs l ldrv lock , f lags ) ;

185 for ( i =0; i < FPGAFSMAXLLDRV; i++) {
i f ( l ldrv [ i ] == drv ) {

187

/∗ ca l l the exit function ∗/

189 i f ( l ldrv [ i ]−>exit )

l ldrv [ i ]−>exit ( ) ;

191

l ldrv [ i ] = NULL;

193

/∗ i f current , search another low level driver ∗/

195 i f ( l ldrv cur == drv ) {
l ldrv cur = NULL;

197 for (k=0; k < FPGAFSMAXLLDRV; k++)

i f ( l ldrv [k ] ) {
199 l ldrv cur = l ldrv [k ] ;

break ;

201 }
}

203 break ;

}
205 }

207 lldrv count−−;

209 spin unlock irqrestore(& fpgafs l ldrv lock , f lags ) ;

return 0 ;

211 }
EXPORTSYMBOLGPL( fpgafs unregister l ldrv ) ;

Listing A.3: FPGAFS: Low Level Driver Management
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